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Abstract. Many parallel applications suffer from latent performance
limitations that may prevent them from scaling to larger machine sizes.
Often, such scalability bugs manifest themselves only when an attempt
to scale the code is actually being made—a point where remediation can
be difficult. However, creating analytical performance models that would
allow such issues to be pinpointed earlier is so laborious that application
developers attempt it at most for a few selected kernels, running the risk
of missing harmful bottlenecks. The objective of the Catwalk project,
which is carried out as part of the DFG Priority Programme 1648 Soft-
ware for Exascale Computing (SPPEXA), is to automate key activities
of the performance modeling process, making this powerful methodology
easier to use and expanding its coverage. This article gives an overview of
the project objectives, describes the results achieved so far, and outlines
future work.

1 Introduction

When scaling their codes to larger numbers of processors, many HPC applica-
tion developers face the situation that all of a sudden a part of the program
starts consuming an excessive amount of time. Unfortunately, discovering latent
scalability bottlenecks through experience is painful and expensive. Removing
them requires not only potentially numerous large-scale experiments to track
them down, prolonged by the scalability issue at hand, but often also major
code surgery in the aftermath. All too often, this happens at a moment when
the manpower is needed elsewhere. This is especially true for applications on
the path to exascale, which have to address numerous technical challenges si-
multaneously, ranging from heterogeneous computing to resilience. Since such
problems usually emerge at a later stage of the development process, dependen-
cies between their source and the rest of the code that have grown over time can
make remediation even harder. One way of finding scalability bottlenecks ear-
lier is through analytical performance modeling. An analytical scalability model
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expresses the execution time or other resources needed to complete the program
as a function of the number of processors. Unfortunately, the laws according
to which the resources needed by the code change as the number of processors
increases are often laborious to infer and may also vary significantly across indi-
vidual parts of complex modular programs. This is why analytical performance
modeling—in spite of its potential—is rarely used to predict the scaling behavior
before problems manifest themselves. As a consequence, this technique is still
confined to a small community of experts.

If today developers decide to model the scalability of their code, and many
shy away from the effort, they first apply both intuition and tests at smaller
scales to identify so-called kernels, which are those parts of the program that
are expected to dominate its performance at larger scales. This step is essential
because modeling a full application with hundreds of modules manually is not
feasible. Then they apply reasoning in a time-consuming process to create ana-
lytical models that describe the scaling behavior of their kernels more precisely.
In a way, they have to solve a chicken-and-egg problem: to find the right kernels,
they require a pre-existing notion of which parts of the program will dominate its
behavior at scale—basically a model of their performance. However, they do not
have enough time to develop models for more than a few pre-selected candidate
kernels, inevitably exposing themselves to the danger of overlooking unscalable
code.

In the Catwalk project, which is part of the DFG Priority Programme 1648
Software for Exascale Computing (SPPEXA), we are developing a novel tool
that eliminates this dilemma. Instead of modeling only a small subset of the
program manually, we generate an empirical performance model for each part of
the target program automatically, significantly increasing not only the coverage
of the scalability check but also its speed.

The remainder of the paper is structured as follows. Section 2 describes the
empirical performance modeling tool and its applications. Section 3 explains the
automatic workflow manager used to run the experiments needed as input for
the tool. Section 4 outlines ongoing work of extending the current MPI-centric
approach towards OpenMP and hybrid applications. One of the target codes for
performance modeling, the library UG4, is discussed in Section 5. Finally, we
summarize our results and outline future work in Section 6.

2 Automated Performance Modeling

The primary objective of our approach is the identification of scalability bugs. A
scalability bug is a part of the program whose scaling behavior is unintention-
ally poor, that is, much worse than expected. As computing hardware moves
towards exascale, developers need early feedback on the scalability of their soft-
ware design so that they can adapt it to the requirements of larger problem
and machine sizes. Our method can be applied to both strong scaling and weak
scaling applications. In addition to searching for performance bugs, the models
our tool produces also support projections that can be helpful when applying
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Fig. 1. Workflow of scalability-bug detection. Solid boxes represent actions or transfor-
mations, and banners their inputs and outputs. Dashed arrows indicate optional paths
taken after user decisions.

for the compute time needed to solve the next larger class of problems. Finally,
because we model both execution time and requirements alongside each other,
our results can also assist in software-hardware co-design or help uncover grow-
ing wait states. Note that although our approach can be easily generalized to
cover many programming models, we focus on message passing programs. For a
detailed description including modeling results, the reader may refer to [3].

The input of our tool is a set of performance measurements on different pro-
cessor counts {p1, . . . , pmax} in the form of parallel profiles. The execution of
these experiments is supported by a workflow manager, which is described in
Section 3. The output of our tool is a list of program regions, ranked by their
predicted execution time at a target scale of pt > pmax processors. We call these
regions kernels because they define the code granularity at which we generate
our models.

Figure 1 gives an overview of the different steps necessary to find scalability
bugs, whose details we explain further below. To ensure a statistically relevant
set of performance data, profile measurements may have to be repeated sev-
eral times—at least on systems subject to jitter. This is done in the optional
statistical quality control step. Once this is accomplished, we apply regression
to obtain a coarse performance model for every possible program region. These
models then undergo an iterative refinement process until the model quality has
reached a saturation point. To arrange the program regions in a ranked list, we
extrapolate the performance either to a specific target scale pt or to infinity,
which means we use the asymptotic behavior as the basis of our comparison. A
scalability bug can be any region with a model worse than a given threshold, such
as anything scaling worse than linearly. Alternatively, a user can compare the
model of a kernel with his own expectations to determine if the performance is
worse than expected. Finally, if the granularity of our program regions is not suf-
ficient to arrive at an actionable recommendation, performance measurements,
and thus the kernels under investigation, can be further refined via more detailed
instrumentation.
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2.1 Related Work

Analytical performance modeling has a long history. Early manual models showed
to be very effective in describing many qualities and characteristics of applica-
tions, systems, and even entire tool chains [2, 9, 13, 16, 18]. Hoefler et al. es-
tablished a simple six-step process to guide manual performance modeling [6],
which served as a blueprint for our automated workflow. Assertions and source-
code annotations support developers in the creation of analytical performance
models [20–22].

Various automated modeling methods exist. Many of these tools focus on
learning the performance characteristics automatically using various machine-
learning approaches [8, 12]. Zhai, Chen, and Zheng extrapolate single-node
performance to complex parallel machines using a trace-driven network simula-
tor [25]. Wu and Müller extrapolate traces to predict communications at larger
scale [24]. Carrington et al. choose a model from a set of canonical functions to
extrapolate traces of applications at scale [4].

2.2 Model Generation

Model generation forms the core of our method. When generating performance
models, we exploit the observation that they are usually composed of a finite
number n of predefined terms, involving powers and logarithms of p (or some
other parameter):

f(p) =
n∑

k=1

ck · pik · logjk2 (p) (1)

This representation is, of course, not exhaustive, but works in most practical sce-
narios since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF). Moreover, our experi-
ence suggests that neither the sets I, J ⊂ Q from which the exponents ik and
jk are chosen nor the number of terms n have to be arbitrarily large or random
to achieve a good fit. Thus, instead of deriving the models through reasoning,
we only need to make reasonable choices for n, I, and J and then simply try
all assignment options one by one. A possible assignment of all ik and jk in a
PMNF expression is called a model hypothesis. Trying all hypotheses one by one
means that for each of them we find coefficients ck with optimal fit. Then we
apply cross-validation [17] to select the hypothesis with the best fit across all
candidates. In our experiments we use I = {0, 0.5, 1, 1.5, 2, 2.5, 3}, J = {0, 1, 2}
and n = 5, and we have observed that it is more than sufficient to accurately
represent behaviors found in real world applications.

2.3 Evaluation Summary

We analyzed real-world applications such as climate codes, quantum chromody-
namics, fluid dynamics and more. We were able to identify a scalability issue in
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Fig. 2. Measured vs. predicted execution time of the two receive operations involved
in the wavefront process of Sweep3D on Juqueen

codes that are known to have such issues (Sweep3D, XNS) and not identify any
scalability issue in codes that are known to have none (MILC, UG4). Moreover,
we were able to identify two scalability issues in a code that was thought to have
only one (HOMME).

2.4 Case Study

In this example, we show how our tool helps identify and explain a scalabil-
ity problem, providing a first impression of the user experience. The Sweep3D
benchmark [10] is a compact application that solves a 1-group time-independent
discrete ordinates neutron transport problem. It was extracted from a real ASCI
code. The literature mentions accurate models [7, 23] that describe the perfor-
mance behavior of wavefront processes as they occur in Sweep3D on various
architectures. The LogGP model reported in [7] characterizes the communica-
tion time as follows:

tcomm = [2(px + py − 2) + 4(nsweep − 1)] · tmsg (2)

px and py denote the lengths of the process-grid edges, nsweep the number of wave-
fronts to be computed, and tmsg the time needed for a one-way nearest-neighbor
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communication. Given that both nsweep and tmsg are largely independent of the
number of processes p and that in our experiments px = py and p = px · py, we
can rewrite Equation (2) as:

tcomm = c · √p (3)

The (combined) model generated by our tool for the two receive operations in-
volved in the wavefront process (sweep → MPI Recv) is 3.99 · √p and, thus,
consistent with Equation (3). As Figure 2 illustrates, it also matches our mea-
surements on Juqueen quite accurately.

In contrast to the growing execution time, the models for both the number of
bytes and the number of messages received predict constant values independent
of the number of processes. This suggests that any increase in communication
time is caused by wait states. Because the wavefront travels along the diagonal
of the process grid, waiting times proportional to the square root of the number
of processes can actually be expected. Having waiting time grow with

√
p means

that every quadrupling of p will double its amount, which can hardly be classified
as scalable.

2.5 Compiler-Driven Performance Modeling

In a similar but orthogonal subproject, we develop techniques for compiler-
guided automated performance modeling. We use a mix of static analysis to
count loop iterations and assess the theoretical scaling and parallelizability of
practical codes [5] with dynamic multi-parameter performance model generation
during runtime [1]. The static analysis instantiates work-depth models of par-
allel applications. It supports the large class of practically relevant loops with
affine update functions and generates additional parameters for other expres-
sions. The method can be used to determine whether the theoretically maxi-
mum parallelism is exposed in a practical implementation of a problem. The
scheme over-approximates the performance of programs if loops are not affine
or guards cannot be determined automatically. The dynamic approach under-
approximates the program’s behavior by analyzing particular executions. PE-
MOGEN, our compilation and modeling framework, automatically instruments
applications to generate performance models during program execution. We used
PEMOGEN to automatically detect 3,370 kernels from fifteen NAS and Mantevo
applications and model their execution times. Both schemes were implemented
in the Low Level Virtual Machine (LLVM) compiler framework [11].

This work is a first step towards full automation of the model generation.
Open problems include non-linear combinations of different parameters as well
as improved statistical techniques for model generation.

3 Workflow Manager

As illustrated in Figure 1, the identification of scalability bugs demands multiple
executions of performance measurements, both with different and with identical



Catwalk: A Quick Development Path for Performance Models 595

Fig. 3. JuBE workflow

input parameters, the latter to minimize the impact of jitter on shared machines.
To automate this process, we use the Jülich Benchmarking Environment (JuBE)
developed by Forschungszentrum Jülich. The steps carried out by JuBE are
shown in Figure 3. The stacked boxes for preparation, compilation, execution,
and analysis mean that these steps of the workflow might exist multiple times.

When running JuBE, it will perform the aforementioned steps in sequence.
It is important to note that JuBE is able to easily create combinatorial runs
of multiple parameters. For example, in a scaling experiment, one can simply
specify multiple numbers of processes, and/or multiple threads per process, and
JuBE will create one experiment for each possible combination, submit all of
them to the resource manager, collect all results, and display them together.

4 Modeling OpenMP Performance

While scalability bugs are known issues for MPI applications and an MPI per-
formance modeling methodology exists, it has not been applied to OpenMP and
the interactions with MPI. As OpenMP represents the de-facto standard for
exploiting manycore architectures, it will become of higher importance to exas-
cale systems. Historically, multithreading and hence OpenMP usually did not
require modeling, as it was easily possible to experimentally tests applications
due to the limited amount of parallelism. With the ongoing trend of integrating
more cores into CPUs, the level of parallelism rises and will most likely continue
to rise well into the exascale era. Therefore, modeling OpenMP performance
and detecting scalability bugs becomes important. Also understanding OpenMP
modeling will enable to address hybrid applications, i.e., application using both
MPI and OpenMP, which have to strike a careful balance distributing available
compute resources between MPI processes and per-process OpenMP threads.
Performance modeling could provide an answer to this question, indicating the
sweet spot—without the need to experimentally test all possible thread and
process combinations.
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Fig. 4. OpenMP CG solver: comparison of measurements with the model

First OpenMP Modeling Experience

To determine possible model parameters and to ascertain precision, we analyzed
a best effort implementation of a conjugate-gradient (CG) solver implementation
from a recent OpenMP tuning study. In contrast to pure MPI applications,
the regions required to sufficiently model the core are much smaller - typically
comprising only the extent of single OpenMP constructs. On the other hand,
the impact of resource limitations, such as memory bandwidth, and the impact
of additional parallelism on the available resources is much more difficult to
account for.

For our test code, we were able to manually create a fairly accurate model of
the runtime using existing standard benchmarks. For this we measured memory
bandwidth using the STREAM TRIAD benchmark and the runtime overhead of
OpenMP constructs for each possible thread count on our test system, the BCS
System of the RWTH Aachen University. We then combined these measurement
results with an analytical model of the remaining computational parts to obtain
the times shown in Figure 4 [19]. Our measurement results of an optimized kernel
implementation were relatively close to the predicted runtimes, with some leeway
owed to peculiarities of the STREAM memory benchmark. As this benchmark
does not exhibit exactly the same memory access pattern as the CG solver,
its measurements can only approximate the bandwidth used by the CG solver.
As a result, especially for the first eight threads of the deployed eight-socket
system and for the close to saturation levels at the peak capacity of the system
(128 threads), the memory bandwidth available to each thread deviates more
substantially, causing a higher deviation of the model from the predicted runtime.
A better memory model would most certainly have reduced these effects. Overall,
however, our experience shows that by combining per-thread measurements of
memory bandwidth and OpenMP construct overhead with partial analytical
modeling of the application a model of OpenMP performance can be constructed.
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5 Scalability of the Multigrid Solver in UG4

A real-world application code for the performance analysis within the project
is the UG4 software library. It is a general-purpose simulation framework for
the grid-based solution of partial differential equations using finite element or
finite volume methods and actively developed at the Goethe Center for Scientific
Computing of University of Frankfurt. It is used to address a broad variety of
problems arising in natural sciences such as biology, neuroscience, physics and
engineering, including drug diffusion through human skin, signal transport in
neurons, and several kinds of flow problems like Navier-Stokes flow or subsurface
flow in porous media.

Because it is a relevant application from computational biology, we are focus-
ing in this project on the drug transport through the human skin. The medicine
diffusion is modeled in a 3d tetrakaidekahedra-based grid, resolving lipid bilay-
ers and corneocyte cell components of the stratum corneum in detail [14, 15].
To get an idea, consider the simplified 2d brick-and-mortar model shown in Fig-
ure 5. While the transport is faster within the lipid bilayers, also the transport
through the corneocytes is analyzed. To resolve the biological setting in detail,
a 3d tetrakaidekahedral grid must be used. These delicate geometries need high
resolutions and therefore require massively parallel computation.

1 m

0,1 m

30 m

Fig. 5. Illustration of skin permeation. Left: The stratum corneum is build up by
corneocyte cells (yellow) and lipid bilayers (channels). Right: medicine concentration
diffusing from top to bottom.

Within a simulation, large sparse matrix systems arise that must be inverted.
This part is not only one of the most time-consuming kernels of the application
but also an algorithm that is hard to parallelize. We chose a geometric multigrid
algorithm, since these are known to be of optimal complexity, i.e., its compu-
tational effort only increases linearly with the problem size, which makes it a
promising candidate to achieve good weak-scaling results.

To generate performance models of the solver implementation, we performed
weak-scaling runs for a diffusion problem on the Juqueen supercomputer us-
ing five identical runs for each process number to account for run-to-run varia-
tion. The analysis showed that no kernel in the application exhibited more than
O(log(p)) growths in runtime. Hence, no scalability bugs were detected. This is



598 F. Wolf et al.

also in agreement with weak scaling studies performed on process configurations
larger than the ones used to generate the models. This is a good starting point
for a more complex and in-depth analysis in the future where we plan to an-
alyze different matrix solver types and setups. In addition we want to analyze
other metrics such as floating-point rates or message sizes, and apply the model
generator to different physical settings.

6 Conclusion

In the Catwalk project, we have already made significant progress towards our
original goal of automating key activities of the performance modeling process.
Now, a lightweight tool exists that can be used to generate useful scalability
models for arbitrarily complex MPI codes. Tests on a range of applications con-
firmed models reported in the literature in cases where such models existed, and
also helped uncover a previously unknown scalability issue in another case.

In the future, we want to apply our approach to the co-design of exascale soft-
ware and hardware. Co-designing applications with systems is a powerful tech-
nique to ensure early and sustained productivity as well as good system design.
We want to assist this process by automating many of the back-of-the-envelope
calculations involved in co-design with a lightweight requirements analysis for
scalable parallel applications. We want to generate empirical models that allow
projections not only for different numbers of processes but also for different prob-
lem sizes. System designers then can use the process-scaling models in tandem
with the problem-scaling models and the specification of a candidate system to
determine the resource usage of an application execution with a certain problem
size.
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