
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

MPI Remote Memory Access Programming (MPI3-RMA)

and Advanced MPI Programming
presented at RWTH Aachen, Jan. 2019

based on tutorials in collaboration with Bill Gropp, Rajeev Thakur, and Pavan Balaji

spcl.inf.ethz.ch

@spcl_eth

▪ MPI is a message-passing library interface standard.

▪ Specification, not implementation

▪ Library, not a language

▪ All explicit parallelism, no magic

▪ MPI-1 supports the classical message-passing programming model: basic point-to-point
communication, collectives, datatypes, etc

▪ MPI-1 was defined (1994) by a broadly based group of parallel computer vendors,
computer scientists, and applications developers.

▪ 2-year intensive process

▪ Implementations appeared quickly and now MPI is taken for granted as vendor-
supported software on any parallel machine.

▪ Free, portable implementations exist for clusters and other environments (MPICH, Open
MPI)

2

MPI-1

2

spcl.inf.ethz.ch

@spcl_eth

▪ MPI-1 (1994), presented at SC’93

▪ Basic point-to-point communication, collectives, datatypes, etc

▪ MPI-2 (1997)

▪ Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, thread support, C++

bindings, …

▪ ---- Stable for 10 years ----

▪ MPI-2.1 (2008)

▪ Minor clarifications and bug fixes to MPI-2

▪ MPI-2.2 (2009)

▪ Small updates and additions to MPI 2.1

▪ MPI-3.0 (2012)

▪ Major new features and additions to MPI

▪ MPI-3.1 (2015)

▪ Minor updates and fixes to MPI 3.0

3

Timeline of the MPI Standard

spcl.inf.ethz.ch

@spcl_eth

▪ Major new features

▪ Nonblocking collectives

▪ Neighborhood collectives

▪ Improved one-sided communication interface

▪ Tools interface

▪ Fortran 2008 bindings

▪ Other new features

▪ Matching Probe and Recv for thread-safe probe and receive

▪ Noncollective communicator creation function

▪ “const” correct C bindings

▪ Comm_split_type function

▪ Nonblocking Comm_dup

▪ Type_create_hindexed_block function

▪ C++ bindings removed

▪ Previously deprecated functions removed

▪ MPI 3.1 added nonblocking collective I/O functions
4

Overview of New Features in MPI-3

spcl.inf.ethz.ch

@spcl_eth

▪ For basic MPI

▪ Using MPI, 3rd edition, 2014, by William Gropp, Ewing Lusk, and Anthony Skjellum

▪ https://mitpress.mit.edu/books/using-MPI-third-edition

▪ For advanced MPI, including MPI-3

▪ Using Advanced MPI, 2014, by William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk

▪ https://mitpress.mit.edu/books/using-advanced-MPI

5

Tutorial Books on MPI

https://mitpress.mit.edu/books/using-MPI-third-edition
https://mitpress.mit.edu/books/using-advanced-MPI

spcl.inf.ethz.ch

@spcl_eth

Advanced Topics: One-sided Communication

6

spcl.inf.ethz.ch

@spcl_eth

▪ The basic idea of one-sided communication models is to decouple data movement with

process synchronization

▪ Should be able to move data without requiring that the remote process synchronize

▪ Each process exposes a part of its memory to other processes

▪ Other processes can directly read from or write to this memory

7

One-sided Communication

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Global

Address

Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

8

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

Memory

Segment

spcl.inf.ethz.ch

@spcl_eth

9

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

spcl.inf.ethz.ch

@spcl_eth

10

Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D

E

L

A

Y

Even the

sending

process is

delayed

Process 0 Process 1

PUT(data)
D

E

L

A

Y

Delay in

process 1

does not

affect

process 0

GET(data)

spcl.inf.ethz.ch

@spcl_eth

▪ “Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided” by Robert

Gerstenberger, Maciej Besta, Torsten Hoefler (SC13 Best Paper Award)

▪ They implemented complete MPI-3 RMA for Cray Gemini (XK5, XE6) and Aries (XC30) systems on top of

lowest-level Cray APIs

▪ Achieved better latency, bandwidth, message rate, and application performance than Cray’s MPI RMA, UPC,

and Coarray Fortran

11

MPI RMA can be efficiently implemented

L
o

w
e

r
is

 b
e

tt
e

r

H
ig

h
e

r
is

 b
e

tt
e

r

spcl.inf.ethz.ch

@spcl_eth

12

3D FFT MILC

Distributed Hash Table Dynamic Sparse Data Exchange

H
ig

h
e

r
is

 b
e

tt
e

r
H

ig
h

e
r

is
 b

e
tt

e
r

L
o

w
e

r
is

 b
e

tt
e

r

L
o

w
e

r
is

 b
e

tt
e

r

Gerstenberger, Besta, Hoefler (SC13)

spcl.inf.ethz.ch

@spcl_eth

▪ To work on both cache-coherent and non-cache-coherent systems

▪ Even though there aren’t many non-cache-coherent systems, it is designed with the future in mind

▪ There even exists a formal model for MPI-3 RMA that can be used by tools and

compilers for optimization, verification, etc.

▪ See “Remote Memory Access Programming in MPI-3” by Hoefler, Dinan, Thakur, Barrett, Balaji, Gropp,

Underwood. ACM TOPC, July 2015.

▪ http://htor.inf.ethz.ch/publications/index.php?pub=201

13

MPI RMA is Carefully and Precisely Specified

http://htor.inf.ethz.ch/publications/index.php?pub=201

spcl.inf.ethz.ch

@spcl_eth

▪ How to create remote accessible memory?

▪ Reading, Writing, and Updating remote memory

▪ Data Synchronization

▪ Memory Model

14

What we need to know in MPI RMA

spcl.inf.ethz.ch

@spcl_eth

▪ Any memory used by a process is, by default, only locally accessible

▪ X = malloc(100);

▪ Once the memory is allocated, the user has to make an explicit MPI call to declare a

memory region as remotely accessible

▪ MPI terminology for remotely accessible memory is a “window”

▪ A group of processes collectively create a “window”

▪ Once a memory region is declared as remotely accessible, all processes in the window

can read/write data to this memory without explicitly synchronizing with the target

process

15

Creating Public Memory

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Process 0

Private

Memory

Private

Memory

Private

Memory

Private

Memory

Private

Memory

window window window window

spcl.inf.ethz.ch

@spcl_eth

▪ Four models exist

▪ MPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

▪ MPI_WIN_CREATE

You already have an allocated buffer that you would like to make remotely accessible

▪ MPI_WIN_CREATE_DYNAMIC

You don’t have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

▪ MPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer

16

Window creation models

spcl.inf.ethz.ch

@spcl_eth

▪ Create a remotely accessible memory region in an RMA window

▪ Only data exposed in a window can be accessed with RMA ops.

▪ Arguments:

▪ size - size of local data in bytes (nonnegative integer)

▪ disp_unit - local unit size for displacements, in bytes (positive integer)

▪ info - info argument (handle)

▪ comm - communicator (handle)

▪ baseptr - pointer to exposed local data

▪ win - window (handle)

17

MPI_WIN_ALLOCATE

MPI_Win_allocate(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

18

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

▪ Expose a region of memory in an RMA window

▪ Only data exposed in a window can be accessed with RMA ops.

▪ Arguments:

▪ base - pointer to local data to expose

▪ size - size of local data in bytes (nonnegative integer)

▪ disp_unit - local unit size for displacements, in bytes (positive integer)

▪ info - info argument (handle)

▪ comm - communicator (handle)

▪ win - window (handle)

19

MPI_WIN_CREATE

MPI_Win_create(void *base, MPI_Aint size,

int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

20

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */

MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);

/* use private memory like you normally would */

a[0] = 1; a[1] = 2;

/* collectively declare memory as remotely accessible */

MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Free_mem(a);

MPI_Finalize(); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

▪ Create an RMA window, to which data can later be attached

▪ Only data exposed in a window can be accessed with RMA ops

▪ Initially “empty”

▪ Application can dynamically attach/detach memory to this window by calling
MPI_Win_attach/detach

▪ Application can access data on this window only after a memory region has been attached

▪ Window origin is MPI_BOTTOM

▪ Displacements are segment addresses relative to MPI_BOTTOM

▪ Must tell others the displacement after calling attach

21

MPI_WIN_CREATE_DYNAMIC

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

22

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */

a = (int *) malloc(1000 * sizeof(int));

/* use private memory like you normally would */

a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */

MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */

MPI_Win_detach(win, a); free(a);

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

▪ MPI provides ability to read, write and atomically modify data in remotely accessible

memory regions

▪ MPI_PUT

▪ MPI_GET

▪ MPI_ACCUMULATE (atomic)

▪ MPI_GET_ACCUMULATE (atomic)

▪ MPI_COMPARE_AND_SWAP (atomic)

▪ MPI_FETCH_AND_OP (atomic)

23

Data movement

spcl.inf.ethz.ch

@spcl_eth

▪ Move data from origin, to target

▪ Separate data description triples for origin and target

24

Data movement: Put

Origin

MPI_Put(const void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

▪ Move data to origin, from target

▪ Separate data description triples for origin and target

25

Data movement: Get

Origin

MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

▪ Atomic update operation, similar to a put

▪ Reduces origin and target data into target buffer using op argument as combiner

▪ Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

▪ Predefined ops only, no user-defined operations

▪ Different data layouts between

target/origin OK

▪ Basic type elements must match

▪ Op = MPI_REPLACE

▪ Implements f(a,b)=b

▪ Atomic PUT

26

Atomic Data Aggregation: Accumulate

MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Origin Target

Remotely

Accessible

Memory

Private

Memory

+=

spcl.inf.ethz.ch

@spcl_eth

▪ Atomic read-modify-write
▪ Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
▪ Predefined ops only

▪ Result stored in target buffer

▪ Original data stored in result buf

▪ Different data layouts between
target/origin OK
▪ Basic type elements must match

▪ Atomic get with MPI_NO_OP

▪ Atomic swap with MPI_REPLACE
27

Atomic Data Aggregation: Get Accumulate

MPI_Get_accumulate(const void *origin_addr,

int origin_count, MPI_Datatype origin_dtype,

void *result_addr,int result_count,

MPI_Datatype result_dtype, int target_rank,

MPI_Aint target_disp,int target_count,

MPI_Datatype target_dype, MPI_Op op, MPI_Win win)

+=

Origin Target

Remotely

Accessible

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

▪ FOP: Simpler version of MPI_Get_accumulate

▪ All buffers share a single predefined datatype

▪ No count argument (it’s always 1)

▪ Simpler interface allows hardware optimization

▪ CAS: Atomic swap if target value is equal to compare value

28

Atomic Data Aggregation: CAS and FOP

MPI_Compare_and_swap(const void *origin_addr,

const void *compare_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Op op, MPI_Win win)

spcl.inf.ethz.ch

@spcl_eth

▪ No guaranteed ordering for Put/Get operations

▪ Result of concurrent Puts to the same location undefined

▪ Result of Get concurrent Put/Accumulate undefined

▪ Can be garbage in both cases

▪ Result of concurrent accumulate operations to the same location are defined according

to the order in which the occurred

▪ Atomic put: Accumulate with op = MPI_REPLACE

▪ Atomic get: Get_accumulate with op = MPI_NO_OP

▪ Accumulate operations from a given process are ordered by default

▪ User can tell the MPI implementation that (s)he does not require ordering as optimization hint

▪ You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW

29

Ordering of Operations in MPI RMA

spcl.inf.ethz.ch

@spcl_eth

30

Examples with operation ordering

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2

1. Concurrent Puts: undefined

2. Concurrent Get and

Put/Accumulates: undefined

3. Concurrent Accumulate

operations to the same location:

ordering is guaranteed

spcl.inf.ethz.ch

@spcl_eth

▪ RMA data access model

▪ When is a process allowed to read/write remotely accessible memory?

▪ When is data written by process X is available for process Y to read?

▪ RMA synchronization models define these semantics

▪ Three synchronization models provided by MPI:

▪ Fence (active target)

▪ Post-start-complete-wait (generalized active target)

▪ Lock/Unlock (passive target)

▪ Data accesses occur within “epochs”

▪ Access epochs: contain a set of operations issued by an origin process

▪ Exposure epochs: enable remote processes to update a target’s window

▪ Epochs define ordering and completion semantics

▪ Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs

31

RMA Synchronization Models

spcl.inf.ethz.ch

@spcl_eth

▪ Collective synchronization model

▪ Starts and ends access and exposure epochs on all

processes in the window

▪ All processes in group of “win” do an MPI_WIN_FENCE

to open an epoch

▪ Everyone can issue PUT/GET operations to read/write data

▪ Everyone does an MPI_WIN_FENCE to close the epoch

▪ All operations complete at the second fence synchronization

32

Fence: Active Target Synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2

spcl.inf.ethz.ch

@spcl_eth

33

Example: Stencil with RMA Fence (1/2)

Origin buffers

Target buffers

RMA window

PUT

P
U

T

PUT

P
U

T

spcl.inf.ethz.ch

@spcl_eth

▪ stencil_mpi_ddt_rma.c

▪ Use MPI_PUTs to move data, explicit receives are not needed

▪ Data location specified by MPI datatypes

▪ Manual packing of data no longer required

34

Example: Stencil with RMA Fence (2/2)

spcl.inf.ethz.ch

@spcl_eth

▪ Like FENCE, but origin and target specify who they communicate with

▪ Target: Exposure epoch

▪ Opened with MPI_Win_post

▪ Closed by MPI_Win_wait

▪ Origin: Access epoch

▪ Opened by MPI_Win_start

▪ Closed by MPI_Win_complete

▪ All synchronization operations may block, to enforce

P-S/C-W ordering

▪ Processes can be both origins and targets

35

PSCW: Generalized Active Target Synchronization

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)

MPI_Win_complete/wait(MPI_Win win)

spcl.inf.ethz.ch

@spcl_eth

▪ Passive mode: One-sided, asynchronous communication

▪ Target does not participate in communication operation

▪ Shared memory-like model

36

Lock/Unlock: Passive Target Synchronization

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait

spcl.inf.ethz.ch

@spcl_eth

▪ Lock/Unlock: Begin/end passive mode epoch

▪ Target process does not make a corresponding MPI call

▪ Can initiate multiple passive target epochs to different processes

▪ Concurrent epochs to same process not allowed (affects threads)

▪ Lock type

▪ SHARED: Other processes using shared can access concurrently

▪ EXCLUSIVE: No other processes can access concurrently

▪ Flush: Remotely complete RMA operations to the target process

▪ After completion, data can be read by target process or a different process

▪ Flush_local: Locally complete RMA operations to the target process

37

Passive Target Synchronization

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

spcl.inf.ethz.ch

@spcl_eth

▪ Lock_all: Shared lock, passive target epoch to all other processes

▪ Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

▪ Flush_all – remotely complete RMA operations to all processes

▪ Flush_local_all – locally complete RMA operations to all

processes

38

Newer Passive Target Synchronization

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

spcl.inf.ethz.ch

@spcl_eth

▪ MPI-3 provides two memory models: separate and unified

▪ MPI-2: Separate Model
▪ Logical public and private copies
▪ MPI provides software coherence between window copies
▪ Extremely portable, to systems that don’t provide

hardware coherence

▪ MPI-3: New Unified Model
▪ Single copy of the window
▪ System must provide coherence
▪ Superset of separate semantics

E.g. allows concurrent local/remote access
▪ Provides access to full performance potential of hardware

39

MPI RMA Memory Model

Public

Copy

Private

Copy

Unified

Copy

Separate Unified

spcl.inf.ethz.ch

@spcl_eth

▪ Very portable, compatible with non-coherent memory systems

▪ Limits concurrent accesses to enable software coherence

40

MPI RMA Memory Model (separate windows)

Public

Copy

Private

Copy

Same source

Same epoch Diff. Sources

load store store

X

X

spcl.inf.ethz.ch

@spcl_eth

▪ Allows concurrent local/remote accesses

▪ Concurrent, conflicting operations are allowed (not invalid)

▪ Outcome is not defined by MPI (defined by the hardware)

▪ Can enable better performance by reducing synchronization

41

MPI RMA Memory Model (unified windows)

Unified

Copy

Same source

Same epoch Diff. Sources

load store store

X

spcl.inf.ethz.ch

@spcl_eth

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

42

MPI RMA Operation Compatibility (Separate)

This matrix shows the compatibility of MPI-RMA operations when two

or more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted

NOVL – Nonoverlapping operations permitted

X – Combining these operations is OK, but data might be garbage

spcl.inf.ethz.ch

@spcl_eth

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

43

MPI RMA Operation Compatibility (Unified)

This matrix shows the compatibility of MPI-RMA operations when two

or more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted

NOVL – Nonoverlapping operations permitted

spcl.inf.ethz.ch

@spcl_eth

44

MPI + Shared-Memory

spcl.inf.ethz.ch

@spcl_eth

▪ MPI-3 allows different processes to allocate shared memory through MPI

▪ MPI_Win_allocate_shared

▪ Uses many of the concepts of one-sided communication

▪ Applications can do hybrid programming using MPI or load/store accesses on the

shared memory window

▪ Other MPI functions can be used to synchronize access to shared memory regions

▪ Can be simpler to program than threads

▪ Controlled sharing!

45

Hybrid Programming with Shared Memory

spcl.inf.ethz.ch

@spcl_eth

46

Creating Shared Memory Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type

(MPI_COMM_TYPE_SHARED)

Shared

memory

communicator

MPI_Win_allocate_shared

Shared

memory

window

Shared

memory

window

Shared

memory

window

Shared

memory

communicator

Shared

memory

communicator

spcl.inf.ethz.ch

@spcl_eth

▪ Shared memory windows allow application processes

to directly perform load/store accesses on all of the

window memory

▪ E.g., x[100] = 10

▪ All of the existing RMA functions can also be used

on such memory for more advanced semantics such

as atomic operations

▪ Can be very useful when processes want to use

threads only to get access to all of the memory on

the node

▪ You can create a shared memory window and put your shared data

Load/store

47

Regular RMA windows vs. Shared memory windows

Local
memory

P0

Local
memory

P1

Load/store
PUT/GET

Traditional RMA

windows

Load/store

Local memory

P0 P1

Load/store

Shared memory

windows

Load/stor

e

spcl.inf.ethz.ch

@spcl_eth

▪ Create a communicator where processes “share a property”

▪ Properties are defined by the “split_type”

▪ Arguments:

▪ comm - input communicator (handle)

▪ Split_type - property of the partitioning (integer)

▪ Key - Rank assignment ordering (nonnegative integer)

▪ info - info argument (handle)

▪ newcomm- output communicator (handle)

48

MPI_COMM_SPLIT_TYPE

MPI_Comm_split_type(MPI_Comm comm, int split_type,

int key, MPI_Info info, MPI_Comm *newcomm)

spcl.inf.ethz.ch

@spcl_eth

▪ Create a remotely accessible memory region in an RMA window

▪ Data exposed in a window can be accessed with RMA ops or load/store

▪ Arguments:

▪ size - size of local data in bytes (nonnegative integer)

▪ disp_unit - local unit size for displacements, in bytes (positive integer)

▪ info - info argument (handle)

▪ comm - communicator (handle)

▪ baseptr - pointer to exposed local data

▪ win - window (handle)

49

MPI_WIN_ALLOCATE_SHARED

MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)

spcl.inf.ethz.ch

@spcl_eth

50

Shared Arrays with Shared memory windows
int main(int argc, char ** argv)

{

int buf[100];

MPI_Init(&argc, &argv);

MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);

MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */

MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);

MPI_Finalize();

return 0;

}

spcl.inf.ethz.ch

@spcl_eth

▪ Shared memory allocation does not need to be uniform across processes

▪ Processes can allocate a different amount of memory (even zero)

▪ The MPI standard does not specify where the memory would be placed (e.g., which

physical memory it will be pinned to)

▪ Implementations can choose their own strategies, though it is expected that an implementation will try

to place shared memory allocated by a process “close to it”

▪ The total allocated shared memory on a communicator is contiguous by default

▪ Users can pass an info hint called “noncontig” that will allow the MPI implementation to align memory

allocations from each process to appropriate boundaries to assist with placement

51

Memory allocation and placement

spcl.inf.ethz.ch

@spcl_eth

52

Example Computation: Stencil

Message passing

model requires ghost-

cells to be explicitly

communicated to

neighbor processes

In the shared-memory

model, there is no

communication.

Neighbors directly

access your data.

spcl.inf.ethz.ch

@spcl_eth

▪ stencil_mpi_shmem.c

53

Walkthrough of 2D Stencil Code with Shared Memory Windows

spcl.inf.ethz.ch

@spcl_eth

Advanced Topics: Nonblocking Collectives primer only

54

spcl.inf.ethz.ch

@spcl_eth

▪ Nonblocking (send/recv) communication

▪ Deadlock avoidance

▪ Overlapping communication/computation

▪ Collective communication

▪ Collection of pre-defined optimized routines

▪ → Nonblocking collective communication

▪ Combines both techniques (more than the sum of the parts ☺)

▪ System noise/imbalance resiliency

▪ Semantic advantages

55

Nonblocking Collective Communication

spcl.inf.ethz.ch

@spcl_eth

▪ Nonblocking variants of all collectives
▪ MPI_Ibcast(<bcast args>, MPI_Request *req);

▪ Semantics
▪ Function returns no matter what

▪ No guaranteed progress (quality of implementation)

▪ Usual completion calls (wait, test) + mixing

▪ Out-of order completion

▪ Restrictions
▪ No tags, in-order matching

▪ Send and vector buffers may not be updated during operation

▪ MPI_Cancel not supported

▪ No matching with blocking collectives

56

Nonblocking Collective Communication

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

spcl.inf.ethz.ch

@spcl_eth

▪ Semantic advantages

▪ Enable asynchronous progression (and manual)

Software pipelining

▪ Decouple data transfer and synchronization

Noise resiliency!

▪ Allow overlapping communicators

See also neighborhood collectives

▪ Multiple outstanding operations at any time

Enables pipelining window

57

Nonblocking Collective Communication

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

spcl.inf.ethz.ch

@spcl_eth

▪ What can that be good for? Well, quite a bit!

▪ Semantics:

▪ MPI_Ibarrier() – calling process entered the barrier, no synchronization happens

▪ Synchronization may happen asynchronously

▪ MPI_Test/Wait() – synchronization happens if necessary

▪ Uses:

▪ Overlap barrier latency (small benefit)

▪ Use the split semantics! Processes notify non-collectively but synchronize collectively!

59

A Non-Blocking Barrier?

spcl.inf.ethz.ch

@spcl_eth

▪ Dynamic Sparse Data Exchange

▪ Dynamic: comm. pattern varies across iterations

▪ Sparse: number of neighbors is limited (𝑂(log𝑃))

▪ Data exchange: only senders know neighbors

▪ Main Problem: metadata

▪ Determine who wants to send how much data to me

(I must post receive and reserve memory)

-- OR --

▪ Use MPI semantics:

Unknown sender (MPI_ANY_SOURCE)

Unknown message size (MPI_PROBE)

Reduces problem to counting the number of neighbors

Allow faster implementation!

60

A Semantics Example: DSDE

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange

spcl.inf.ethz.ch

@spcl_eth

▪ Based on Personalized Exchange (𝚯(𝐏))

▪ Processes exchange

metadata (sizes)

about neighborhoods

with all-to-all

▪ Processes post

receives afterwards

▪ Most intuitive but

least performance

and scalability!

61

Using Alltoall (PEX)

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange

spcl.inf.ethz.ch

@spcl_eth

▪ Bases on Personalized Census (𝚯(𝐏))

▪ Processes exchange

metadata (counts) about

neighborhoods with

reduce_scatter

▪ Receivers checks with

wildcard MPI_IPROBE

and receives messages

▪ Better than PEX but

non-deterministic!

62

Reduce_scatter (PCX)

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange

spcl.inf.ethz.ch

@spcl_eth

▪ Complexity - census (barrier): (𝚯(𝐥𝐨𝐠 𝐏))

▪ Combines metadata with actual transmission

▪ Point-to-point

synchronization

▪ Continue receiving

until barrier completes

▪ Processes start coll.

synch. (barrier) when

p2p phase ended

barrier = distributed

marker!

▪ Better than Alltoall,

reduce-scatter!

63

MPI_Ibarrier (NBX)

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange

spcl.inf.ethz.ch

@spcl_eth

▪ On a clustered Erdős-Rényi graph, weak scaling

▪ 6.75 million edges per node (filled 1 GiB)

▪ HW barrier support is significant at large scale!

64

Parallel Breadth First Search

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange

spcl.inf.ethz.ch

@spcl_eth

▪ Nonblocking communication does two things:

▪ Overlap and relax synchronization

▪ Collective communication does one thing

▪ Specialized pre-optimized routines

▪ Performance portability

▪ Hopefully transparent performance

▪ They can be composed

▪ E.g., software pipelining

76

Nonblocking Collectives Summary

