
SAGE:
Software-based Attestation
for GPU Execution

Andrei Ivanov, Benjamin Rothenberger, Arnaud Dethise,
Marco Canini, Torsten Hoefler, Adrian Perrig

KAUST

By 2026, majority of Cloud workloads
will be DL [Research and Markets, Jul’21 report]

Accelerators (mostly GPUs!)
necessary to process vast data
volumes of DL applications

DL applied to security-critical and
sensitive domains makes integrity
and secrecy for both code and data
within GPUs paramount

2

How can we execute code
securely on GPUs, today?

1. No widespread deployed hardware TEEs,
uptake might be a while

2. TEE tech is still a moving target (see SGX)
3. HW-based attestation difficult to secure,

impossible to patch

To bridge this gap with a software-only approach
SAGE: Software-based Attestation for GPU Execution

3

SAGE

• The first software-based attestation mechanism for GPU execution
providing code and data integrity+secrecy for NVIDIA Ampere GPUs

• SAGE guarantees that:
• on the untrusted GPU device …
• user kernels are unmodified
• user kernels are invoked for execution
• user kernels are executed untampered
• ... despite the potential presence of a malicious actor

4

GPU
Bus

CPU

Trusted
Application
Verifier

External
Challenger

Untrusted Host Platform

Verification
Function User Kernel

SAGE

• The first software-based attestation mechanism for GPU execution
providing code and data integrity+secrecy for NVIDIA Ampere GPUs

• CPU enclave (e.g., SGX) serves as local trusted verifier
• Kicks off a software primitive to

establish a root of trust on the GPU
• Also sets up a shared secret key

between verifier and the GPU

5

Verifiable code execution

Goal: provide verifier with guarantee about what
 code executed on the GPU

Approach:
1. Verify code integrity through Root-of-Trust attestation
2. Set up untampered code execution environment
3. Execute code

6

Root-of-Trust (RoT) establishment

Established RoT ensures that:
• state of an untrusted system contains all and only content chosen by

trusted local verifier, and code begins execution in that state
• or that the verifier discovers the existence of modifications

→ Attestation of code on GPU enables RoT establishment

7

Software-based attestation for CPU

Basic idea (SWATT [1], PIONEER [2], …)
1. A verification function runs on an untrusted system and

computes a checksum over itself
• Both the checksum value and the time to compute it matter
• Noticeably slow down or incorrect if an adversary tampers with the system

2. A trusted verifier checks for the correct checksum and
that value is returned before a threshold time

1 + 2: establish a RoT (or fail), kick off intended code

[1] A. Seshadri, A. Perrig, L. van Doorn and P. Khosla, "SWATT: softWare-based attestation for embedded devices," IEEE Symposium on Security and Privacy, 2004.
[2] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, P. Khosla, "Pioneer: verifying code integrity and enforcing untampered code execution on legacy systems," ACM SOSP, 2005. 8

Software-based attestation for GPU

Challenges
• Very challenging threat model
• Data and code secrecy + integrity
• Malicious code on CPU and/or GPU, snooping interconnect

• Design of verification function for GPU
• Lack of GPU architecture documentation … very hard to:

• write native GPU code, no toolchain support
• achieve optimal GPU utilization
• predictable execution time (verifier must determine correct execution time)

• No true random number generator (needed for crypto)
• Fend off subtle attacks (e.g., pre-computation, data substitution)

9

Assumptions

• Verifier and GPU on the same machine
• Verifier is trusted (e.g., SGX)

• GPU details are known (model, clock speed, specs.)
• If multi-GPU node, the fastest GPU type is used

• TCB includes GPU runtime and driver, plus the TCB of Intel SGX

10

Overview of SAGE

11

(G)A100 : How to utilize this beast?

[S
ou

rc
e:

 N
VI

DI
A

G
A1

00
 F

ul
l G

PU
 1

28
 S

M
s]

GPUs have lots of parallel compute:
100+ streaming multiprocessors (SMs)
1000s of threads organized in blocks and
scheduled in warps (32 threads)
There are registers, caches, shared memory
and (off-chip) global memory

12

Verification Function (VF)

[S
ou

rc
e:

 N
VI

DI
A

G
A1

00
 F

ul
l G

PU
 1

28
 S

M
s]

Checksum
function

Checksum
function

Idea: if an attacker alters the verification function but wants to forge a
correct checksum value, needs to do “more work”, causing a time overhead

Time-optimal implementation
• can't be improved
• additional code makes it slower
Predictable execution time
• peak 1 instruction/cycle
Challenge-dependent checksums
• no precomputation
Computation is parallel
• combine values from threads at the end Can’t leave resources to an attacker!

13

Code generation framework
• Achieving optimal GPU utilization is hard
• Compilers are not optimal
• No access to register allocation and instruction ordering

CUDA

PTX

SASS

nvcc: compiler

ptxas: optimizing assembler

accessible

accessible

not accessible

We discover SASS instruction encoding and build a code generation framework

14

Key establishment

Goal: establish a symmetric key between trusted verifier and the GPU
without any prior secret
Approach:
• Rely on SAKE protocol [Seshadri at al., DCOSS’08]

• DH key exchange + Guy Fawkes for auth. (commitment using hash chains)
• Exploits the asymmetry between genuine and modified checksum function

• Adapted to SAGE (checksum func., single challenger, crypto primitives)
• Formally verified w/ Tamarin prover

• Implemented a TRNG (for DH) on the GPU
• simultaneous memory accesses unpredictably flips bits in shared variables

15

Checksum function
Ch

al
le

ng
e

Ch
ec

ks
um

Checksum
function

Ch
al

le
ng

e

Ch
ec

ks
um

Checksum
function

Ch
al

le
ng

e

Ch
ec

ks
um

Checksum
function

Ch
al

le
ng

e

Ch
ec

ks
um

Checksum
function

Occupy all SMs, threads
Fill all FMA and ALU pipelines
Occupy all registers

Don’t exceed L0 and L1 instruction caches
Avoid expensive frequent synchronizations

Execute lots of parallel
checksum computations
(each with a different seed)

Combine as single value via
XOR hierarchy at the end

16

Checksum function – concretely

Ch
al

le
ng

e

Ch
ec

ks
um

17

Checksum function – concretely

Ch
al

le
ng

e

Ch
ec

ks
um

Checksum loop (per each thread)
Pseudo-random access of VF code
• Adv. cannot predict what will be read

Update the checksum
• Use simple instr. (add, sub, xor) alternately (strong

ordering) to include accessed VF code in checksum,
rotate bits by a varying prime number

Include the data pointer
Self-modifying code
• Checksum value to change a portion of instructions

Checksum epilog
Combine the per-thread checksum into a single one

18

Checksum verification threshold
for (i = 0; i < 100000; i++)
{

}

checksum
body

428
instructions

A100 time: Tavg = 0.4941 s (99% of peak)

Checksum validation:
AMD EPYC 7742: 21.6 s
Intel Xeon Gold 6348: 102 s

A100 time: Tmin = 0.4966 s (98% of peak)

for (i = 0; i < 100000; i++)
{

}

checksum
body

429
instructions

+1
instruction

σ = 0.0009 s

Tavg + 2.5σ < Tmin ⇨ False positive probability <1%

0.4964 < 0.4966 ✅
19

Memory copy attacks

orig.
VF

orig.
VF

mal.
VF

mal.
VF

orig.
VF

mal.
VF

orig.
VF

PC

DP

PC

PC

PC
DP

DP

DP

(a) (b) (c) (d)

Altered malicious VF runs along side the original VF

How to defend against memory copy attacks? Self-modifying code

Variants of relative placement of original and malicious VF

Checksum result is the same?
⇨ Successful attack!

Seshadri et al., [1], [2]

20

Self-modifying code – 1st attempt
for (i = 0; i < 100000; i++)
{

}

checksum
body

428
instructions

modify
instruction

Modified instruction is
not visible!

for (i = 0; i < 1000; i++) {

}

checksum
body

8,342
instructions
> 128 KiB L2
instruction
cache

modify
instruction

increase #
instructions

decrease #
iterations

Only 75% of peak performance due
to overheads from cache misses

21

Checksum validation:
AMD EPYC 7742: 497 s
Intel Xeon Gold 6348: 2337 s

Self-modifying code
for (i = 0; i < 1000; i++) {

}

checksum
body

8,342
instructions
> 128 KiB L2
instruction
cache

modify
instruction

increase #
instructions

decrease #
iterations

Only 75% of peak performance due
to overheads from cache misses

A100 time: Tavg = 12.40 s (100% of peak)

for (i = 0; i < 1000; i++) {

}

for (i = 0; i < 5000; i++) {

}

modify
instruction

216
instructions

add inner
loop

Quite slow!
Conjecture: GPU vendor could help get better performance 22

Example: Multilayer Perceptron

(SAGE disabled)

Runtime including data transfer and kernel launch overheads

Kernel
Linear

Kernel
ReLU

Kernel
Linear

GPU
input

GPU
output

GPU
bias

GPU
weight

GPU
bias

GPU
weight

[batch, 784]

[100]

[10]

[100, 784]

[10, 100]

[batch, 10]

CPU
input

CPU
output

data transfer

data transfer

<13% ✅

23

Overheads of SAGE

CPU

GPU

copy data

CPU

GPU

start kernel

A100 40 GB memory bandwidth: 1,555 GB/s

SAGE overhead: < 30% ✅ <5% for kernels with duration >14.24 ms ✅

24

Conclusion
SAGE: software-only RoT establishment for GPU
guaranteeing code and data integrity+secrecy
even in presence of an adversary
• Concrete VF design as a proof-of-concept
• GPU vendors natural incentives to develop improved VFs

• Technical demonstration for NVIDIA Ampere GPUs

HW solutions? NVIDIA Hopper intros confidential computing
SW + HW together:

• multiple layers of security, defense in depth
• no reliance on embedded keys, lower TCB
• less overall trust required

https://github.com/spcl/sage

25

https://github.com/spcl/sage

Backup

26

27

Checksum loop implementation

increment loop counter

imm = generate_immediate(C)

C - checksum value
on current thread

overwrite imm in instruction

jump to start if not last iteration

C = instruction(imm, C)

start:

addr =get_checksum_based_address(C)

non blocking load: x <- addr

use loaded value: C = mix(C, x)

Need to hide latency
of long instructions

filler computation

filler computation

filler computation

filler computation

filler computation

filler computation

filler computation

filler computation

r0 += r0 << imm0
r1 += r1 >> imm1
r2 += r2 << imm2
r3 += r3 >> imm3
r0 += r0 << imm4
r1 += r1 >> imm5

.....

filler computation: 1 instruction/cycle

ALU
pipeline

FMA
pipeline

SHF.R.U32.HI REG, RZ, IMM, REG IMAD.U32 REG, REG, 2**IMM, REG

Number of iterations: 2,500,000
Verifiable memory region: 524,288 ✕ 32-bit
Probability that certain location is skipped:

✅

28

Checksum epilog

Threads

Warps

Blocks

Grid

++++

+ +

+

warp-level reduce
in registers:
__shfl_xor_sync

block-level reduce
in shared memory:
atomicAdd_block

grid-level reduce
in global memory:
atomicAdd

Registers

Reduction
to single

32-bit
checksum

value

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

+ + + + + + + + + + + + + + + +

