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▪ Reproducibility – identical results/conclusions with identical data and method

▪ Replicability – non-identical but similar results/conclusions with similar data and 

method

3

Terminology

PNAS, Feb. 2015

“In the good old days physicists repeated each other’s 

experiments, just to be sure. Today they stick to 

FORTRAN, so that they can share each other’s 

programs, bugs included.” – Edsger Dijkstra (1930-

2002), Dutch computer scientist, Turing Award 1972
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▪ Reproducibility – get the exact results

▪ Replicability – repeat the effect/insight

4

Reproducibility and replicability? Nature, May 2016

includes CS/HPC ☺
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Functional reproducibility is relatively simple – release the code!

Single-threaded, if you don’t care much about performance

Gets a bit more complex when you share parallel codes (IEEE 754 is not associative)

IPDPS’14

Rump, JSC’09, Demmel, Nguyen, ARITH’13
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But what if performance is your science result?

(2006)

1 node 

(system B)

▪ Original findings:

▪ If carefully tuned, NBC speed up a 3D solver

Full code published

▪ 8003 domain – 4 GB (distributed) array

1 process per node, 8-96 nodes

Opteron 246 (old even in 2006, retired now)

▪ Super-linear speedup for 96 nodes

~5% better than linear

▪ 9 years later: attempt to reproduce ☺!

System A: 28 quad-core nodes, Xeon E5520

System B: 4 nodes, dual Opteron 6274

“Neither the experiment in A nor the one in B could reproduce the 

results presented in the original paper, where the usage of the 

NBC library resulted in a performance gain for practically all node 

counts, reaching a superlinear speedup for 96 cores (explained 

as being due to cache effects in the inner part of the matrix 

vector product).”

A

B

Moore’s law predicts 

~100x speedup!

Reproducing performance results is hard! Is it even possible?
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My own replication result

Replicated many folklore results on Jaguar, 

results from Ferreira, Bridges, Brightwell

as well as Beckman et al. both two years earlier on 

different machines 

Replicating performance results is possible but rare! Make it the default?
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Nature, May 2016

includes CS/HPC ☺

HPC Performance reproducibility – is it worth trying?

▪ Reproducibility – get the exact results

▪ Replicability – repeat the effect/insight

Small Quiz

Do you believe one can reproduce any Gordon Bell 

finalist from before 2015?

Interpretability: We call an experiment interpretable if it provides enough 

information to allow scientists to understand the experiment, draw own 

conclusions, assess their certainty, and possibly generalize results.
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▪ We are all interested in High Performance Computing

▪ We (want to) treat it as a science – reproducing experiments is a major pillar of the scientific method

▪ When measuring performance, important questions are

▪ “How many iterations do I have to run per measurement?”

▪ “How many measurements should I run?”

▪ “Once I have all data, how do I summarize it into a single number?”

▪ “How do I compare the performance of different systems?”

▪ “How do I measure time in a parallel system?”

▪ …

▪ How are they answered in the field today?

▪ Young scientists ask their advisors … who typically answer based on some intuition

▪ We (the community) need to establish scientific principles for benchmarking

But do we not already have them – let’s see …

9

How does Garth measure and report performance?

Garth is a young, 

inexperienced and 

very smart student!
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▪ Stratified random sample of three top-conferences over four years

▪ HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)

▪ 10 random papers from each (10-50% of population)

▪ 120 total papers, 20% (25) did not report performance (were excluded)

10

State of the Practice in HPC

▪ Main results:

1. Most papers report details about the hardware but fail to describe the software environment.

Important details for reproducibility missing

2. The average paper’s results are hard to interpret and easy to question

Measurements and data not well explained

3. No statistically significant evidence for improvement over the years 

▪ Our main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough 

information to allow scientists to understand the experiment, draw own conclusions, assess their 

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!
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Yes, this is a 

garlic press!

Well, we all know this - but do we really know how to fix it?

11

1991 – the classic!

2012 – the shocking

2013 – the extension

Eddie is

Garth’s

advisor
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Yes, this is a 

garlic press!

This is not new – meet Eddie!

12

1991 – the classic!

2012 – the shocking

2013 – the extension

Our constructive approach: provide a set of (12) rules

▪ Attempt to emphasize interpretability of performance experiments

▪ The set is not complete

▪ And probably never will be

▪ Intended to serve as a solid start

▪ Call to the community to extend it

▪ I will illustrate the 12 rules now 

▪ Using real-world examples

All anonymized!

▪ Garth and Eddie will represent the naive/good scientist
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The most common issue: speedup plots

Check out my 

wonderful 

Speedup!

I can’t tell if 

this is useful 

at all!

▪ Most common and oldest-known issue

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ 39 papers reported speedups

15 (38%) did not specify the base-performance 

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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The most common issue: speedup plots

Check out my 

wonderful 

Speedup!

I can’t tell if 

this is useful 

at all!

▪ Most common and oldest-known issue

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ 39 papers reported speedups

15 (38%) did not specify the base-performance 

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as 

well as the absolute execution performance of the base case.

▪ A simple generalization of this rule implies that one should never report ratios without 

absolute values.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Garth’s new compiler optimization

Check out my 

new compiler!

How did it 

perform for FT 

and BT?

Well, GarthCC

segfaulted for FT 

and was 20% 

slower for BT.

Rule 2: Specify the reason for only reporting subsets of 

standard benchmarks or applications or not using all system 

resources.

▪ This implies: Show results even if your code/approach stops scaling!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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The mean parts of means – or how to summarize data
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+20% +20% +20% -20%

But GarthCC is 

10% faster than 

ICC on average!

Ugs, well, BT ran much longer 

than the others. GarthCC is 

actually 10% slower!

Ah, true, the 

geometric mean 

is 8% speedup!

You cannot use the 

arithmetic mean for 

ratios!

The geometric mean has no 

clear interpretation! What 

was the completion time of 

the whole workload?

Rule 3: Use the arithmetic mean only for summarizing costs. 

Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios; summarize the costs or 

rates that the ratios base on instead. Only if these are not 

available use the geometric mean for summarizing ratios.

▪ 51 papers use means to summarize data, only four (!) specify which mean was used

▪ A single paper correctly specifies the use of the harmonic mean

▪ Two use geometric means, without reason

▪ Similar issues in other communities (PLDI, CGO, LCTES) – see N. Amaral’s report

▪ harmonic mean ≤ geometric mean ≤ arithmetic mean

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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The latency of 

Piz Dora is 

1.77us!

How did you 

get to this?

I averaged 106

tests, it must be 

right!

u
s
e
c

sample

Why do you 

think so? Can I 

see the data?

The simplest networking question: ping pong latency!

Rule 5: Report if the measurement values are deterministic. 

For nondeterministic data, report confidence intervals of the 

measurement.

▪ Most papers report nondeterministic measurement results

▪ Only 15 mention some measure of variance

▪ Only two (!) report confidence intervals

▪ CIs allow us to compute the number of required measurements!

▪ Can be very simple, e.g., single sentence in evaluation:

“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Thou shalt not trust your average textbook!

18

The confidence 

interval is 1.765us 

to 1.775us

Did you assume 

normality?

Yes, I used the central 

limit theorem to 

normalize by summing 

subsets of size 100!

Can we test for 

normality?

Ugs, the data is not 

normal at all! The real 

CI is actually 1.6us to 

1.9us!

Rule 6: Do not assume normality of collected data (e.g., 

based on the number of samples) without diagnostic checking.

▪ Most events will slow down performance

▪ Heavy right-tailed distributions

▪ The Central Limit Theorem only applies asymptotically

▪ Some papers/textbook mention “30-40 samples”, don’t trust them!

▪ Two papers used CIs around the mean without testing for normality

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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▪ Rank-based measures (no assumption about distribution)

▪ Essentially always better than assuming normality

▪ Example: median (50th percentile) vs. mean for HPL

▪ Rather stable statistic for expectation

▪ Other percentiles (usually 25th and 75th) are also useful

19

Dealing with non-normal data – nonparametric statistics

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Comparing nondeterministic measurements

I saw variance 

using GarthCC as 

well!

Retract the 

paper! You have 

not shown 

anything!

ICC GarthCC
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Show me the 

data!

Rule 7: Compare nondeterministic data in a statistically sound

way, e.g., using non-overlapping confidence intervals or ANOVA. 
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Thou shalt not trust your system!
Look what 

data I got!

Clearly, the 

mean/median are 

not sufficient!

Try quantile 

regression!

Image credit: nersc.gov

S

D

De Sensi et al.: An In-Depth Analysis of the Slingshot Interconnect, IEEE/ACM SC20
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Quantile Regression
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Wow, so Pilatus is better for (worst-

case) latency-critical workloads even 

though Dora is expected to be faster

Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

▪ Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH 

Computer Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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▪ Measurements can be expensive!

▪ Yet necessary to reach certain confidence

▪ How to determine the minimal number of measurements?

▪ Measure until the confidence interval has a certain acceptable width

▪ For example, measure until the 95% CI is within 5% of the mean/median

▪ Can be computed analytically assuming normal data

▪ Compute iteratively for nonparametric statistics

▪ Often heard: “we cannot afford more than a single measurement”

▪ E.g., Gordon Bell runs

▪ Well, then one cannot say anything about the variance

Even 3-4 measurement can provide very tight CI (assuming normality)

Can also exploit repetitive nature of many applications

23

How many measurements are needed?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Experimental design

MPI_Reduce

behaves much 

simpler!

I don’t believe you, try 

other numbers of 

processes!

Rule 9: Document all varying factors and their levels as well 

as the complete experimental setup (e.g., software, hardware, 

techniques) to facilitate reproducibility and provide 

interpretability.

▪ We recommend factorial design

▪ Consider parameters such as node allocation, process-to-node mapping, network or 

node contention

▪ If they cannot be controlled easily, use randomization and model them as random variable

▪ This is hard in practice and not easy to capture in rules 

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Time in parallel systems

My simple 

broadcast takes 

only one latency!

That’s nonsense!

But I measured it 

so it must be true!

t = -MPI_Wtime();

for(i=0; i<1000; i++) {

MPI_Bcast(…);

}

t += MPI_Wtime();

t /= 1000;

…
Measure each 

operation 

separately!

Bcast 1

Bcast 2

Bcast 3

Bcast 4

Bcast 5 end 1

end 2

end 3

end 4

end 5

…
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Summarizing times in parallel systems!

My new reduce 

takes only 30us 

on 64 ranks.

Come on, show 

me the data!

Rule 10: For parallel time measurements, report all 

measurement, (optional) synchronization, and summarization 

techniques.

▪ Measure events separately

▪ Use high-precision timers

▪ Synchronize processes 

▪ Summarize across processes:

▪ Min/max (unstable), average, median – depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Give times a meaning!

I compute 1010

digits of Pi in 

2ms on Dora!

I have no clue.

Can you provide?

- Ideal speedup 

- Amdahl’s speedup

- Parallel overheads

Ok: The code runs 

17ms on a single 

core, 0.2ms are 

initialization and it 

has one reduction!

Rule 11: If possible, show upper performance bounds to 

facilitate interpretability of the measured results.

▪ Model computer system as k-dimensional space

▪ Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.

▪ Features are typical rates

▪ Determine maximum rate for each dimension

E.g., from documentation or benchmarks

▪ Can be used to proof optimality of implementation

▪ If the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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My most common 

request was 

“show me the 

data”

28

Plot as much information as possible!

This is how I should 

have presented the 

Dora results.

Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if 

they indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Yes, this is a 

garlic press!

This is not new – meet Eddie!

29

1991 – the classic!

2012 – the shocking

2013 – the extension

Wrapping up the 12 rules …

▪ Attempt to emphasize interpretability of performance experiments

▪ Teach some basic statistics

▪ The set of 12 rules is not complete

▪ And probably never will be

▪ Intended to serve as a solid start

▪ Call to the community to extend it

Nature, 2016

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Conclusions and call for action

▪ Performance may not be reproducible

▪ At least not for many (important) results

▪ Interpretability fosters scientific progress

▪ Enables to build on results

▪ Sounds statistics is the biggest gap today

▪ We need to foster interpretability

▪ Do it ourselves (this is not easy)

▪ Teach young students

▪ Maybe even enforce in TPCs

▪ See the 12 rules as a start

▪ Need to be extended (or concretized)

▪ Much is implemented in LibSciBench [1]

No vegetables were harmed for creating these slides!

[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/.

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/
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How to not benchmark machine/deep learning workloads

“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimize deep learning, blog post, see URL below)

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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▪ Tradeoffs between those two

▪ Very unusual for HPC people – we always operated in double precision

Mostly out of fear of rounding issues 

▪ Deep learning shows how little accuracy one can get away with

▪ Well, examples are drawn randomly from some distribution we don’t know …

▪ Usually, noise is quite high …

▪ So the computation doesn’t need to be higher precision than that noise 

Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

▪ But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast 

compute!

▪ A humorous guide to floptimization

▪ Twelve rules to help present your (not so great?) results in a much better light
32

“Statistical performance” vs. “hardware performance”
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▪ Too obvious for this audience

▪ Was very popular in 2015!

▪ Surprisingly many (still) do this

33

1) Ignore accuracy when scaling up!

Learning 

community’s self-

correction

(Y. LeCun)

HPC picking 

up!

Scalability without 

a good baseline? 

(D. Bailey)
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▪ Training accuracy is sufficient isn’t it?

34

2) Do not report test accuracy!

Source: quora.com
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▪ Report the best run – SGD is a bit fragile, so don’t worry

At the end, the minutes for the final run matter most!

35

3) Do not report all training runs needed to tune hyperparameters!

flop/s!
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▪ Tesla K20 in 2018!?

Even though the older machines would win the beauty contest!

36

4) Compare outdated hardware with special-purpose hardware!

vs.
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▪ Run layers or communication kernels in isolation

▪ Avoids issues with accuracy completely ☺

Doesn’t that look a bit like GoogLeNet?

37

5) Show only kernels/subsets when scaling!

vs.
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▪ Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!

38

6) Do not consider I/O!
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▪ Yes, we’re talking ops today, 64-bit flops was so yesterday!

▪ If we don’t achieve a target fast enough, let’s redefine it!

And never talk about how many more of those ops one needs to find a solution, it’s all about the rate, 

op/s!

▪ Actually, my laptop achieves an “exaop”: 

▪ each of the 3e9 transistors switching a binary digit each at 2.4e9 Hz

39

7) Report highest ops numbers (whatever that means)!

vs.
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▪ Pretty cool idea isn’t it? Hyperparameters sometimes conflict

So always tune the to show the best result, whatever the result shall be!

40

8) Show performance when enabling option set A and show 

accuracy when enabling option set B!
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▪ The pinnacle of floptimization! Very hard to catch!

But Dr. Catlock Holmes below can catch it.

41

9) Train on (unreasonably) large inputs!

Low-resolution cat (244x244 – 1 Gflop/example)

vs.

High-resolution cat (8kx8k – 1 Tflop/example)
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▪ Train for fixed wall-time when scaling processors

▪ so when you use twice as many processors you get twice as many flop/s!

But who cares about application speedup?

42

10) Run training just for the right time!
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▪ All DL is strong scaling – limited model and limited data

▪ So just redefine the terms relative to minibatches:

▪ Weak scaling keeps MB size per process constant – overall grows (less iterations per epoch, duh!)

▪ Strong scaling keeps overall MB size constant (better but harder)

▪ Microbatching is not a problem!

43

11) Minibatch sizing for fun and profit – weak vs. strong scaling.
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▪ Compare either time to solution or accuracy if both together don’t look strong!

There used to be conventions but let’s redefine them.

44

12) Select carefully how to compare to the state of the art!
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Conclusions and call for action

▪ Performance may not be reproducible

▪ At least not for many (important) results

▪ Interpretability fosters scientific progress

▪ Enables to build on results

▪ Sounds statistics is the biggest gap today

▪ We need to foster interpretability

▪ Do it ourselves (this is not easy)

▪ Teach young students

▪ Maybe even enforce in TPCs

▪ See the 12 rules as a start

▪ Need to be extended (or concretized)

▪ Much is implemented in LibSciBench [1]

No vegetables were harmed for creating these slides!
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http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

