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Abstract
Many graph representation learning (GRL) problems are dynamic, with millions
of edges added or removed per second. A fundamental workload in this setting
is dynamic link prediction: using a history of graph updates to predict whether a
given pair of vertices will become connected. Recent schemes for link predic-
tion in such dynamic settings employ Transformers, modeling individual graph
updates as single tokens. In this work, we propose HOT: a model that enhances
this line of works by harnessing higher-order (HO) graph structures; specifically,
k-hop neighbors and more general subgraphs containing a given pair of vertices.
Harnessing such HO structures by encoding them into the attention matrix of the
underlying Transformer results in higher accuracy of link prediction outcomes,
but at the expense of increased memory pressure. To alleviate this, we resort to
a recent class of schemes that impose hierarchy on the attention matrix, signifi-
cantly reducing memory footprint. The final design offers a sweetspot between
high accuracy and low memory utilization. HOT outperforms other dynamic
GRL schemes, for example achieving 9%, 7%, and 15% higher accuracy than –
respectively – DyGFormer, TGN, and GraphMixer, for the MOOC dataset. Our
design can be seamlessly extended towards other dynamic GRL workloads.

1 Introduction
Analyzing graphs in a dynamic setting, where edges and vertices can be arbitrarily modified, has
become an important task. For example, the Twitter social network may experience even 500 million
new tweets in a single day, while retail transaction graphs consisting of billions of transactions are
generated every year [3]. Other domains where dynamic networks are often used are transportation [8,
51, 126, 131, 132], physical systems [59, 87, 96], scientific collaboration [22, 24, 65, 100, 129], and
others [2, 42, 71, 74, 101, 133, 135, 138]. A fundamental task in such a dynamic graph setting is
predicting links that would appear in the future, based on the history of previous graph modifications.
This task is crucial for understanding the future of the graph datasets, which enables more accurate
graph analytics in real-time in production settings such as recommendation systems in online stores.
Moreover, it enables better performance decisions, for example by adjusting load balancing strategies
with the knowledge of future events [15, 16, 95].

Recent years brought intense developments into harnessing graph representation learning (GRL)
techniques for the above-described tasks [65], resulting in a broad domain called dynamic graph
representation learning (DGRL) [9, 55, 66, 99, 100, 129]. Initially, various approaches have been
proposed based on Temporal Random Walks [63, 120], Sequential Models [36, 116], Memory
Networks [27, 103], or the Dynamic Graph Neural Networks (GNNs) paradigm, in which node
embeddings are iteratively updated based on the information passed by their neighbors [34, 81,
92, 110, 118, 127], while considering temporal data from the past [92, 127]. However, the most
recent and powerful schemes such as DyGFormer [134] instead directly harness the Transformer
model [111] for the DGRL tasks. The intuition is that dynamic graphs can be modeled as a sequence
of updates over time [134], and they could hence benefit from Transformers by treating these updates
as individual tokens. This enhanced predictions for dynamic graphs [134].
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In parallel to the developments in DGRL, many GRL schemes have harnessed higher-order (HO)
graph structure [1, 11, 25, 25, 45, 46, 77, 108, 128]. Fundamentally, they harness relationships
between vertices that go beyond simple edges, for example triangles. Incorporating HO graph
structures results in fundamentally more powerful predictions for many workloads [83]. This line of
works, however, has primarily focused on static GRL.

In this work, we embrace the HO graph structures for higher accuracy in DGRL (contribution #1).
For this, we harness two powerful HO structures: k-hop neighbors and more general subgraphs
containing a given pair of vertices. We harness these structures by encoding them appropriately
into the attention matrix of the underlying Transformer. This results in higher accuracy of link
prediction. However, harnessing HO leads to substantially larger memory utilization, which limits its
applicability. This is because, intuitively, to make a prediction in the temporal setting, one needs to
consider the history of past updates. As HO increases the number of graph elements to be considered
in such a history, the number of entities to be used is substantially inflated. For example, when
relying on the Transformer architecture (as in DyGFormer), the number of tokens that must be used is
significantly increased when incorporating HO. For example, when incorporating x 2-hop neighbors
for each vertex, the token count increases by a factor of x. This becomes even higher for k > 2 and
more complex HO structures such as triangles. Hence, one needs to decrease the considered length of
the history of updates to make the computation feasible. But then, considering shorter history entails
lower accuracy, effectively annihilating benefits gained from using HO in the first place.

We tackle this by harnessing the state of the art outcomes from the world of Transformers
(contribution #2), where one imposes hierarchy into the traditionally “flat” attention matrix. Ex-
amples of such recent hierarchical Transformer models are RWKV [86], Swin Transformer [78],
hierarchical BERT [84], Nested Hierarchical Transformer [140], Hift [32], or Block-Recurrent Trans-
former [60]. We employ these designs to alleviate the memory requirements of the attention matrix
by dividing it into parts, computing attention locally within each part, and then using such blocks
to obtain the final outcomes. For concreteness, we pick Block-Recurrent Transformer [60], but
our approach can be used with others. Our final outcome, a model called HOT, supported by a
theoretical analysis (contribution #3), ensures long-range and high-accuracy dynamic link prediction.
It outperforms all other dynamic GRL schemes (contribution #4), for example achieving 9%, 7%,
and 15% higher accuracy than – respectively – DyGFormer, TGN, and GraphMixer, on the MOOC
dataset. Our work illustrates the importance of HO structures in the temporal dimension.

2 Background
Static graphs are usually modeled as a tuple G = (V,E, f, w), where V is the set of nodes, E ⊆ V×V
is the set of edges, f : V → RdN are the node features and w : E → RdE are the edge features.
Dynamic graphs are more complex to represent, as it is necessary to capture their evolution over
time. In this work, we focus on the commonly used Continuous-Time Dynamic Graph (CTDG)
representation [34, 36, 63, 71, 79, 81, 92, 110, 116, 118, 120, 127]. A CTDG is a tuple (G(0), T ),
where G(0) = (V (0), E(0), f (0), w(0)) represents the initial state of the graph and T is a set of tuples
of the form (timestamp, event) representing events to be applied to the graph at given timestamps.
These events could be node additions/deletions, edge additions/deletions, or feature updates.

Assume a CTDG (G(0), T ), a timestamp t ∈ N, and an edge (u, v). In dynamic link prediction, the
task is to decide, whether there is some event e pertaining to (u, v), such that (t, e) ∈ { (t′, e) ∈ T |
t′ = t }, while only considering the CTDG (G(0), { (t′, e) ∈ T | t′ < t }). This problem is usually
considered in two settings, the transductive setting (predicting links between nodes that were seen
during training) and the inductive setting (predicting links between nodes not seen during training).

Transformer [111] harnesses the multi-head attention mechanism in order to overcome the inherent
sequential design of recurrent neural networks (RNNs) [7, 29, 105]. Transformer has been effectively
applied to different ML tasks, including but not limited to image recognition and time-series fore-
casting [41, 76]. It has also laid the ground for many recent advances in generative AI [31, 89]. We
focus on the encoder-only architecture, following past DGRL works [134]. Let x = (x1, . . .xn) be
a sequence of n d-dimensional inputs xi ∈ Rd. We consider the input matrix X ∈ Rn×d, a single
input token is represented as an individual row in X . Transformer details are in Appendix A.

The runtime of Transformer increases quadratically with the length of the input sequence. As such,
many efforts have been made to make it more efficient [12, 37, 38, 90, 122]. Some of these efforts
culminated in the Block-Recurrent Transformer [60], a model which tries to bring together the
advantages of Transformers and LSTMs [57], a special kind of RNN. As this is one of the principal
building blocks of our model, we will briefly describe its architecture in the following.
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The Block-Recurrent Transformer is essentially an extension of the Transformer-XL model [37] and
the sliding-window attention [12] mechanism. Long input sequences are divided into segments of
size S, and further divided into blocks of size B. Following the sliding-window attention mechanism,
instead of applying attention to the whole sequence, the Block-Recurrent Transformer applies it on
each block individually. The elements of each block may attend to recurrently computed state vectors
as well. With B state vectors, we get attention matrices of size B × 2B. As B is constant, the cost
of applying attention on each block is linear with respect to the segment size. This improves on the
aforementioned quadratic runtime of the vanilla Transformer. More BRT details are in Appendix A.
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Figure 1: Illustration of a temporal higher-order example and an overview of the HOT model.

3 The HOT Model
We now present the design of HOT, see Figure 1. The key idea behind HOT is to harness the HO
graph structures within the temporal dimension, and combine them with an efficient Transformer
design applied to the temporal dimension modeled with tokens. For this, we extend the template
design proposed by the DyGLib library [134] that was provided as a setting where DyGFormer
is implemented; it offers structured training and evaluation pipelines for dynamic link prediction.
We extend DyGLib and its DyGFormer design with the ability to harness HO and the hierarchical
Transformers; we pick the Block-Recurrent Transformer (BRT) as a specific design of choice.

Overall, HOT computes node representations within its encoder module; these representations are
then leveraged to solve the downstream link prediction tasks using a suitable decoder. Let u, v
be nodes in some CTDG and t a timestamp. Given this, the model first extracts and appropriately
encodes the higher-order neighbors of each vertex (Section 3.1), followed by constructing input
feature matrices (Section 3.2). Then, the input matrices are augmented by encoding the selected HO
interactions (Section 3.3). After that, certain adjustments are made, such as passing the matrices via
MLPs (Section 3.4), followed by plugging in BRT (Section 3.5).

3.1 Extracting Higher-Order Neighbors
The model relies on the historical 1-hop and 2-hop interactions of the nodes u and v before t to
make its predictions. The set of 1-hop interactions of a vertex u contains all tuples (u, u′, t′) for
which there is an interaction between nodes u and u′ at timestamp t′ < t. To enable a trade-off
between memory consumption and accuracy, we only add the s1 most recent interactions from the
set of 1-hop interactions to the list of considered interactions Su for u. Then, we form the set of
2-hop interactions. For each 1-hop interaction tuple (u, u′, t′) in Su, we consider the interactions
(u′, u′′, t′′) with t′′ < t. We add (u, u′′, t′′) for the s2 most recent such interactions to the list of
interactions Su. This scheme is further generalized to arbitrary k-hop neighbourhoods by iterating
the construction processes. In our experiments, we focus on 1-hop and 2-hop neighborhoods.
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The parameters s1 and s2 (and any other sk if one uses k > 2) introduce a tradeoff between accuracy
vs. preprocessing time and memory overhead. Specifically, larger values of any si result in a more
complete view of the temporal graph structure that is encoded into the HOT model. This usually
increases the accuracy of predictions. On the other hand, they also increase the preprocessing as well
as the memory overhead. This is because both the size |Su| and the preprocessing time are O(s1s2)
(or O(

∏
i∈{1,...,k} si) for higher k).

3.2 Constructing Input Feature Matrices
In the next step, the model constructs neighbor and link encodings based on the raw node and
link features of the CTDG. For node u, it constructs the matrices Xu,N ∈ R|Su|×dN and Xu,E ∈
R|Su|×dE , where dN and dE are the dimensions of the node and edge feature vectors, respectively.
The matrix Xu,N is further extended to include a one-hot encoding to differentiate 1-hop neighbours
from 2-hop neighbours. Specifically, two values b1 and b2 are appended to every row in Xu,N . We
set b1 = 1 and b2 = 0 if the corresponding node is a 1-hop neighbour, and b1 = 0 and b2 = 1 if the
corresponding node is a 2-hop neighbour; dN is updated accordingly.

For positional encodings, we rely on the scheme introduced in the TGAT model, reused in DyGLib.
Here, for some timestamp t′, the time interval encoding for the time interval ∆t′ = t− t′ is given by√

1/dT [cos (w1∆t′) , sin (w1∆t′) , . . . , cos (wdT
∆t′) , sin (wdT

∆t′)] , (1)
where w1, . . . , wdT

are trainable weights. The model computes this for every interaction in Su,
forming Xu,T . All these matrices are constructed for v analogously.

3.3 Encoding Higher-Order Neighbor Interactions
We next extend the DyGFormer’s neighborhood encoding into the HO interactions. For this, we
introduce matrices Cu, which – for each vertex u – determine the count of neighbors shared by u and
any other vertex v interacting with u, enabling us to encode temporal triangles containing u and v (in
the following description, we focus on triangles for concreteness; other HO structures are enabled
by considering neighbors beyond 1 hop). Specifically, for any vertex u, the i-th row of the matrix
Cu ∈ R|Su|×2 contains two numbers. The first one is the number of occurrences of a neighbor w of
u (w is identified by the i-row of Su) within Su. The second number is the count of occurrences of w
within Sv , i.e., the temporal neighbourhood of v. Then, we project these vectors of occurrences onto
a dC-dimensional feature space using MLPs with one ReLU-activated hidden layer. The output are
the two matrices Xu,C ∈ R|Su|×dC , Xv,C ∈ R|Sv|×dC . Xu,C is then computed from Cu as follows
(Xv,C is computed analogously):

Xu,C = MLP0(Cu[:, 0]) + MLP1(Cu[:, 1]) ∈ R|Su|×dC . (2)

If u and v have a common 1-hop neighbour, then the subgraph induced by those three nodes is
a triangle. Thus, this encodes the information about u and v being a part of this triangle into the
harnessed feature matrix. More generally, by considering the common k-hop neighbors the model
can encode any cycle containing nodes u and v of length up to 2k + 1. By extension, it can also
encode any structure that is a conjunction of such cycles. This further increases the scope of the HO
structures taken into account.

3.4 Patching, Alignment, Concatenation
Before feeding X·,· into the selected efficient Transformer, we harness several optional transforma-
tions from DyGLib, which further improve the model performance and memory utilization. First, the
patching technique bundles multiple rows of a matrix together into one row, so as to reduce the size
of the input sequence. Then, alignment reduces the feature dimension of this input by projecting each
row onto a smaller dimension. Let us examine the scheme on the matrix Xu,N . The model constructs

Mu,N ∈ Rlu×P ·dN by dividing Xu,N into lu =
⌈
|Su|
P

⌉
patches and flattening P temporally adjacent

encodings. The same procedure is applied to the other matrices X·,·. The encodings then need to be
aligned to a common dimension d. For the matrix Mu,N , we have

Zu,N = Mu,NWN + bN ∈ Rlu×d, (3)

where WN ∈ RP ·dN×d and bN ∈ Rd are trainable parameters. The matrices Zu,E , Zu,T , and Zu,C

are extracted identically from the matrices Mu,E , Mu,T , and Mu,C . The same applies to the matrices
belonging to node v. Finally, the extracted matrices are concatenated horizontally into

Zu = Zu,N∥Zu,E∥Zu,T ∥Zu,C ∈ Rlu×4d, Zv = Zv,N∥Zv,E∥Zv,T ∥Zv,C ∈ Rlv×4d. (4)
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3.5 Harnessing Temporal Hierarchy with Block-Recurrent Transformer
Finally, we harness a hierarchical Transformer to minimize memory required for keeping the HO
temporal structures. The BRT divides Z into B blocks and applies attention locally on each individual
block. Additionally, each block is cross-attended with a recurrent state, which allows the element
in one block to attend to a summary of the elements in the previous blocks. The outputs of each
block are then concatenated into a matrix H , which shares its dimensions with the input Z. Finally,
temporal node representations for nodes u and v are computed with the average pooling layer.

3.6 Computational Cost
Let s =

∏
i si, such that |Su| ∈ O(s) and |Sv| ∈ O(s) and let ∆ be the largest number of interactions

among vertices u and v. Then, the cost to compute Su and Sv is O(s∆ log∆). The cost to construct
the Zu and Zv is dominated by the alignment process, which costs O(sdNd) for the node matrix
Zu,N . The cost is analogous for the other matrices constituting Zu and Zv. The remaining costs
are that of the BRT model for feature dimension 8d, which is, in particular, linear in the number of
interactions s. The attention mechanism in a block-recurrent Transformer costs O(sdB/P ) [60],
compared to Θ(s2d/P ) in the vanilla Transformer. As the block size B approaches the number of
interactions s, the cost of the BRT attention approaches that of the vanilla Transformer.

4 Evaluation
We now illustrate the advantages of HOT over the state of the art.

4.1 Experimental Setup
We follow recent established methodologies for evaluating DGRL [88]. We list the most relevant
information here, and include details of model parameters and related information in the appendix.
We use the standard evaluation metrics, namely the Average Precision (AP) (using the scikit
implementation [85]) and the Area Under the ROC (AUC).

We use all major state-of-the-art baselines for DGRL on CTDGs; these are TGN [92], CAWN [120],
TCL [116], GraphMixer [36], DyGFormer [134]), as well as a purely memorisation-based approach
(EdgeBank [88]). Note that our analyses confirm recent findings that illustrate the superiority of
DyGFormer among these baselines [134].

We consider both transductive and inductive setting. In the former, the whole graph structure is
visible during training. In the latter, we test the dynamic link prediction and the dynamic node
classification on the graph structure that was not visible during training.

Recent work on benchmarking dynamic GRL [134] illustrates the importance of evaluating different
sampling schemes beyond plain random sampling. We follow this approach and use all three discussed
sampling strategies, showing that HOT achieves competitive results over the state of the art regardless
of how links are sampled. First, we use random sampling (RNES), which is widely used in most
dynamic link prediction evaluations. In RNES, when observing some positive edge sample, we
generate a negative one by changing its destination node to some random vertex. Second, we use a
recent scheme called historical sampling (HNES) [88]. In many datasets, it is common to observe
repeated interactions (i.e., edges that appear and disappear several times). With random sampling,
most negative edge queries will be new to the model (i.e., unobsered in the past). As such, it becomes
easy to discard these edges, instead of discardig the repeated edges. In historical sampling, we
sample negative edges from the set of previously observed edges, which do not appear in the current
timestamp (if we cannot sample enough edges this way, the rest is sampled using random sampling).
Third, we also use inductive sampling (INES) [88], in which we sample edges from those that were
not seen during training and do not appear in the current timestamp, i.e., new edges. As before, if we
cannot sample enough edges this way, the rest is sampled using the random sampling technique. This
scheme produces a metric to better evaluate the model’s ability to induce new relations.

All three above sampling schemes can be considered for both transductive or inductive evaluation
setting. Note that we do not consider the historical and the inductive sampling techniques in the
inductive evaluation setting. This is because the sampled set becomes quite small and unlikely to
produce meaningful results. Additionally, consider that both techniques are equivalent in the inductive
setting. This is clearly visible in the results obtained by DyGFormer [134].

4.2 Analysis of Performance
We illustrate the comparison of the performance of different models in Figure 2. In the MOOC graph
dataset, the model successfully leverages 2-hop interactions to make its predictions more accurate.
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The MOOC graph dataset

Comparison of models Comparison of HO used

Comparison of models Comparison of HO used

The CanParl graph dataset

The LastFM graph dataset

Comparison of models
Comparison of HO used

Figure 2: AP (%) and AUC (%) scores on the MOOC, LastFM and CanParl datasets using the various negative edge sampling techniques
(RNES, HNES, INES) in the transductive setting, and using the random negative edge sampling technique in the inductive setting (Ind). Baseline
results are the best ones provided by [134].
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This leads to the best results over all the evaluation metrics and negative edge sampling strategies.
These advantages hold for both inductive and inductive settings. Similar performance patterns can
be seen for the LastFM dataset, where higher-order neighbors also enable obtaining more powerful
predictions. As for the Can. Parl. dataset, the results obtained without the higher-order structure
are already quite high, and the additional graph structural information does not seem to be adding
significant amount of value to the model in this case. Furthermore, it is possible that the decay in
performance with higher s2 values originates from the added noise that comes with considering more
information. In any case, HOT still ensures the highest scores for both the AP and the AUC metric.

Another factor that benefits HOT, particularly in comparison with the DyGFormer, is the horizontal
concatenation of the matrices Zu and Zv , as opposed to the vertical concatenation in the DyGFormer
case. This concatenation strategy forces the attention modules to consider the elements in the same
position (in either sequences) together, as one element. We conjecture that this additionally allows
the model to better infer the chronological position of each element in the sequence.

4.3 Analysis of Higher-Order (HO) Characteristics
The benefits of harnessing HO structures are clearly visible in the rightmost plots of Figure 2. There,
we fix s1 and vary s2. For the MOOC and LastFM, we consider s2 ∈ {0, 1}; for CanParl, we consider
s2 ∈ {0, 1, 2, 4}. By setting s2 = 0, we exclude any HO structures beyond triangles from the model’s
consideration (the results in this setting correspond to the bars labeled "1-hop"). Overall, CanParl
does not benefit from higher values of s2. Contrarily, for the other two datasets, the model clearly
benefits from the HO structures. Setting s2 = 1, i.e., considering not only triangles, but any cycles of
up to 5 nodes, further improves performance.

4.4 Analysis of Memory Consumption
We also investigate in more detail the impact of the block size B (see Section 3.5) and the patch
size P (see Section 3.4) on the memory consumption. The results are in Figure 3 and they show the
size needed for the attention matrix in Vanilla Transformer, compared to HOT. First, assuming that
blocks are processed sequentially as in RNNs, reducing B also decreases the needed memory (for a
fixed P ). While large values of B inflate the total memory beyond what is needed for the Vanilla
Transformer, smaller blocks result in much less memory needed. This comes with a tradeoff, and
the latency to process the model increases linearly with the number of blocks. This however can be
alleviated with schemes designed to specifically speed up the RNN processing. The patch size P has
a similar effect: the smaller it is, the more memory is required for Vanilla Transformer (for a fixed
B), due to the patching flattening (Section 3.4). Hence, selecting B and P is a design choice that
would impact both the needed memory and performance. In our implementation, we offer a set of
scripts that offer a quick assessment of the required memory, facilitating the design of schemes based
on HOT. Overall, based on the given input sequence length S, the patch size P , and the block size
B, the total amount of elements in attention matrices of the vanilla Transformer can be assessed as
(3S/P ) · (8d). Furthermore, considering just one block, the attention matrix based on BRT needs
about (9 · 2B) · (8d) elements.

5 Discussion
5.1 Applications of HOT Beyond Link Prediction
The generic structure of HOT ensures that it can be straightforwardly extended towards other dynamic
graph ML tasks, including edge, node, or graph classification or regression.

To illustrate this on a concrete example, we implemented dynamic node classification within HOT.
Here, we are given a CTDG (G(0), T ), a timestamp t ∈ N, a node v ∈ V , and a set of N ∈ N classes
{Si}Ni=1. The goal is to decide, for which 1 ≤ i ≤ N , v ∈ Si. Naturally, we assume v ∈

⋃N
i=1 Si

∀v ∈ V . To solve this task in HOT, we employ transfer learning, i.e., we harness the parameters from
the dynamic link prediction task to compute suitable dynamic node representations, and then train a
suitable MLP decoder on those representations. The preliminary evaluation indicate performance
comparable to, or better than DyGFormer on – respectively – the Wikipedia and the Reddit datasets.
A more detailed investigation into the model design for dynamic node classification, as well as
more extensive evaluations, are future work. However, our preliminary results indicate potential in
harnessing the HO structures in the general dynamic GRL setting.

Other dynamic GRL tasks could be achieved using established GRL methods. For example,
graph classification could be used by applying pooling on top of the edge and node classifica-
tion [9, 55, 66, 99, 100, 129].

7



HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

CanPerl dataset

CanPerl dataset LastFM dataset

LastFM dataset MOOC dataset

MOOC dataset

Analysis on the impact of block size on memory utilization

Analysis on the impact of patch size on memory utilization

HOTHOTHOT
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Figure 3: The analysis of the impact of the block and patch size on memory utilization.

5.2 Limitations of HOT
The limitations of HOT are largely analogous to those of any HO scheme. First, the time complexity
required to search for HO structures may limit the size of the graphs or the length of the temporal
history to be considered. Here, HOT’s harnessing of efficient Transformers alleviates the time and
storage complexity needed for the on-the-fly predictions. Still, HOT needs to search for HO structures
to construct the input feature matrices; however, it is a one-time preprocessing overhead for a given
dataset. Second, utilizing “too much” of HO may introduce excessive amounts of noise and ultimately
lower the accuracy. This limitation is also generic to HO learning, it is commonly alleviated by
appropriately limiting the size of the harnessed HO structures [137].

6 Related Work
Our work touches on many areas. We now briefly discuss related works.

Graph Neural Networks and Graph Representation Learning Graph neural networks (GNNs)
emerged as a highly successful part of the graph representation learning (GRL) field [52]. Numerous
GNN models have been developed [19, 20, 30, 33, 49, 52, 97, 125, 139, 142], including convolu-
tional [53, 70, 102, 123, 128], attentional [23, 82, 106, 112], message-passing [10, 28, 50, 96, 121],
or – more recently – higher-order (HO) ones [1, 1, 13, 26, 83, 93, 94]. Moreover, a large number
of software frameworks [44, 58, 62, 73, 80, 109, 113–115, 117, 119, 124, 136, 141, 143], and even
hardware accelerators [48, 68, 69, 75, 130] for processing GNNs have been introduced over the last
years. All these schemes target static graphs, with no updates, while in this work, we target the
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dynamic GRL, where graphs evolve over time. However, our model can be seamlessly used for a
temporal static setting, where the graph comes with the available history of past updates.

Dynamic Graph Representation Learning There have been many approaches to solving dynamic
GRL in the past years. JODIE [71] is an RNN-based approach for bipartite graphs. The model
constructs and maintains embeddings of source and target nodes and updates these recurrently
using different RNNs. DyRep [110] is an RNN-based approach, which keeps node representations
and updates them using a self-attention mechanism, which dynamically weights the importance of
different structures in the graph. TGAT [127] computes node representations based on the static
GAT model [112], i.e., by aggregating messages from the temporal neighborhood of each node using
self-attention. The main difference between TGAT and GAT is that timestamps are taken as input
as well and taken into consideration after a suitable time encoding is found. TGN [92] divides the
model architecture into the message function, the message aggregator, the memory updater, and the
embedding module. Given two nodes and a timestamp, the model fetches node representations from
memory, aggregates them, and updates its memory. It then builds node embeddings for downstream
tasks using a TGAT-like layer. CAWN [120] builds on the concept of anonymous walks [61]
and extends them to consider the time dimension. Given two nodes and a timestamp, the model
collects causal anonymous walks starting from both nodes. They are then encoded using RNNs
and finally aggregated for predictions. TCL [116] first orders previous interactions of each node in
some order that reflects both temporal and structural positioning (for any two pairs of nodes). The
model then runs a Transformer on each of the nodes’ previous interactions. These Transformers
are coupled through cross-attention. GraphMixer [36] is a simple architecture consisting of three
modules: the link encoder, the node encoder, and the link classifier. The link encoder summarizes
temporal link information using an MLP-mixer [107], and the node encoder captures node information
using neighbour mean-pooling. The link classifier applies a 2-layer MLP on the output of the two
other modules to formulate a prediction. Finally, DyGFormer [134] is an approach based on the
Transformer model. The model proposed in this work, HOT, extends DyGFormer and outperforms
all other baselines for different datasets thanks to harnessing the HO graph structures.

Dynamic and Streaming Graph Computing There also exist systems for processing dynamic and
streaming graphs [14, 15, 35, 95] beyond GRL. Graph streaming frameworks such as STINGER [43]
or Aspen [40] emerged to enable processing and analyzing dynamically evolving graphs. Graph
databases are systems used to manage, process, analyze, and store vast amounts of rich and complex
graph datasets. Graph databases have a long history of development and focus in both academia
and in the industry, and there has been significant work on them [4, 5, 16–18, 39, 47, 54, 64, 72].
Such systems often execute graph analytics algorithms (e.g., PageRank) concurrently with graph
updates (e.g., edge insertions). Thus, these frameworks must tackle unique challenges, for example
effective modeling and storage of dynamic datasets, efficient ingestion of a stream of graph updates
concurrently with graph queries, or support for effective programming model. Here, recently
introduced Neural graph databases focus on integrating Graph Databases with GRL capabilities [21,
91]. Our model could be used to extend these systems with dynamic GRL workloads.

7 Conclusion
Dynamic graph representation learning (DGRL), where graph datasets may ingest millions of edge
updates per second, is an area of growing importance. In this work, we enhance one of the most recent
and powerful works in DGRL, the Transformer-based DGRL, by harnessing higher-order (HO) graph
structures: k-hop neighbors and more general subgraphs. As this approach enables harnessing more
information from the temporal dimension, it results in the higher accuracy of prediction outcomes.
Simultaneously, it comes at the expense of increased memory pressure through the larger underlying
attention matrix. For this, we employ a recent class of Transformer models that impose hierarchy on
the attention matrix, picking Block-Recurrent Transformer for concreteness. This reduces memory
footprint while ensuring – for example – 9%, 7%, and 15% higher accuracy in dynamic link prediction
than – respectively – DyGFormer, TGN, and GraphMixer, for the MOOC dataset.

Our design illustrates that a careful combination of models and paradigms used in different settings,
such as the Higher-Order graph structures and the Block-Recurrent Transformer, results in advantages
in both performance and memory footprint in DGRL. This approach could be extended by considering
other state-of-the-art Transformer schemes or HO GNN models.
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Appendix
A Model Design: Additional Details
We provide more details on the model design.

A.1 Vanilla Transformer
We detail some parts of the vanilla Transformer that are used when constructing the Block-Recurrent
Transformer.

A.1.1 Positional Encoding

Before the sequence arrives at the encoder, it requires positional encoding, such that the Transformer
has a notion of the order of the inputs xi in the input sequence. The original paper suggests the
following transformation of the inputs:

Zi,j = Xi,j +

{
sin

(
i/1000j/d

)
if j even,

cos
(
i/1000(j−1)/d

)
otherwise.

(5)

The matrix Z is then fed into the multi-head self-attention module of the encoder.

A.1.2 Multi-Head Self-Attention

Here, the matrix Z is first projected onto three different matrices Q = ZWQ ∈ Rn×dk , K =
ZWK ∈ Rn×dk and V = ZWV ∈ Rn×dv , where WQ, WK and WV are parameter matrices. The
matrix of outputs is then calculated as follows:

Attention (Q,K, V ) = softmax
(
QKT

√
d

)
V (6)
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In order to capture information from different representation subspaces we can perform Multi-Head
Attention. In this case, the matrix of outputs is calculated as follows:

MH (Q,K, V ) = Concat (head1, . . . , headh)WO (7)

where WO ∈ Rhdv×d, and

headi = Attention
(
QW i

Q,KW i
K , V W i

V

)
(8)

where W i
Q ∈ Rd×dk , W i

K ∈ Rd×dk , W i
V ∈ Rd×dv are parameter matrices.

The output of this module is then added to Z over a residual connection [56] and normalised using
Layer Normalisation [6]. It is then fed into an MLP.

A.1.3 Feed-Forward Network

The MLP consists of a single ReLu-activated hidden layer. It is applied to each element of the
sequence separately. The output is then, as before, added to the output of the previous module over a
residual connection and normalised using Layer Normalisation.

The output of the encoder layer is then fed back into another encoder layer. The number of layers
in the encoder depends on the implementation. The original paper suggests a total of 6 layers.
Afterwards, the output is fed into the decoder, which computes the final output probabilities.

A.2 Block-Recurrent Transformer
A.2.1 Model Overview

The first block within each segment must be able to attend to previous segments. As such, following
an idea from Transformer-XL [37], the model stores the keys and values of the computed state vectors
of the previous segment in cache.

The Block-Recurrent Transformer is composed of various modules called recurrent cells. There are
two types of recurrent cells, vertical cells, which calculate next state vectors, and horizontal cells,
which calculate output token embeddings. These can be stacked in any desired way. The blocks are
fed one by one to the stack of recurrent cells, and the outputs of the last cell are then concatenated to
form the output of the model.

Vertical cell: Just like in the vanilla Transformer, in the vertical recurrent cell, the input token
embeddings undergo self-attention. However, unlike the vanilla Transformer, this type of cell also
employs cross-attention on the input embeddings and the current state vectors, i.e., it computes
attention scores using a query matrix (Q) based on the input embeddings and key and value matrices
(K, V ) based on the current state vectors. The results from both attention modules are then projected
to some feature space and added to the input token embeddings over a residual connection. The
resulting values are then fed into an MLP and added to its output to form the output token embeddings.

Horizontal cell: In the horizontal cell the roles of the current state vectors and the input token
embeddings are inverted. While the current state vectors undergo self-attention and contribute to the
cross-attention module with a query matrix (Q), the input token embeddings only contribute to the
cross-attention module with the key and value matrices (K, V ). The results of the attention modules
are projected onto some feature space. The resulting values ht are then fed into a group of gates, one
per current state vector ct. Note, that t refers to the index of the current block within the sequence.
Each gate realizes the following computations:

zt = Wzht + bz (9)

g = σ(bg) (10)

ct+1 = ct ⊙ g + zt ⊙ (1− g) (11)

where Wz , bz and bg are trainable parameters, σ is the sigmoid function and ⊙ is the element-wise
multiplication. The outputs of the gates ct+1 are then concatenated to form the next state vectors and
the output of this cell.
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A.2.2 Model Details

After constructing the matrix Z, the model feeds it into a Block-Recurrent Transformer consisting
of one horizontal layer and one vertical layer. The matrix Z is divided into segments of size S and
further into blocks of size B. In the following we assume |Z| < S and outline the process undergone
by Z in this case. The general case is described after.

The blocks of Z are fed into the layers of the Block-Recurrent Transformer one by one, starting from
the top of Z. Let Zb be the b-th block in Z. After the predecessors of Zb have been processed, Zb is
fed into the horizontal cell along with the current state vectors C. Here, the state vectors are first
normalized and graced with learned positional embeddings as follows:

C = C +Wp, (12)

where Wp is a trainable parameter.

Next, we extract the keys and values matrices (Kb, Vb) of Zb as follows:

Kb = ZbW
Zb

K and Vb = ZbW
Zb

V , (13)

where WZb

K ∈ R8d×Idk , and WZb

V ∈ R8d×Idv are trainable parameters. These matrices are stored for
later use in the vertical layer as well.

The computation proceeds as follows:

A
(1)
h = MH

(
CW

(1)
Q , CWC

K , CWC
V

)
, (14)

A
(2)
h = MH

(
CW

(2)
Q , [Kb−1;Kb], [Vb−1;Vb]

)
, (15)

where W
(1)
Q ∈ R8d×Idk , WC

K ∈ R8d×Idk , WC
V ∈ R8d×Idv , and W

(2)
Q ∈ R8d×Idk are trainable

parameters, I denotes the number of attention heads, and [∗; ∗] refers to vertical concatenation. If
b = 1, the concatenation is skipped. A(1)

h is the result of self-attention on the current state vector,
while A

(2)
h results from cross-attending the state vectors with the input Zb. Note, that the function

MH refers to the Multi-Head Attention module as described in Section A.1.2.

The matrices A(1)
h and A

(2)
h are then concatenated horizontally and projected to a suitable dimension

as follows:

Ph = (A(1)∥A(2))Wh + bh, (16)

where Wh ∈ R2Idv×8d and bh ∈ R8d are trainable parameters. Subsequently, Ph enters a gating
mechanism along with the current state vectors. There, each state vector is multiplied element-wise
with the sigmoid of a trainable vector bg ∈ R8d, while the rows of Ph are multiplied element-wise
with the vector 1− σ(bg). These are then added together as shown below.

N = C ⊙ σ(bg) + Ph ⊙ (1− σ(bg)), (17)

where ⊙ denotes element-wise multiplication, and σ denotes the sigmoid function. N is now referred
to as the next state vectors and is fed, along with Zb to a vertical cell.

In the vertical cell, the state vectors are first normalized and graced with learned positional embed-
dings as before:

N = N +Wp. (18)

Then, they are processed as follows:

A(3) = MHR
(
ZbW

(3)
Q , [Kb−1;Kb], [Vb−1;Vb]

)
, (19)
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A(4) = MH
(
ZbW

(4)
Q , NWC

K , NWC
V

)
, (20)

where W
(3)
Q ∈ R8d×Idk , and W

(4)
Q ∈ R8d×Idk are trainable parameters, and WC

K and WC
V are the

same parameters used to project the state vectors in the horizontal layer. Unlike before, here, the input
Zb undergoes self-attention, while cross-attending with the state vectors extracted from the previous
cell N . Note, that the function MHR refers to a Multi-Head Attention module with Extrapolatable
Position Embeddings [104].

As before, the matrices A(3) and A(4) are concatenated horizontally and projected to a suitable
dimension:

Pv = (A(3)∥A(4))Wv + bv, (21)

where Wv ∈ R2Idv×8d and bv ∈ R8d are trainable parameters. Zb is then added to Pv over a residual
connection. The resulting matrix is fed into an FFNGEGLU [98] and added to its output over a
residual connection:

Ob = FFNGEGLU (Pv + Zb) + Pv + Zb. (22)

Ob is the output of the Block-Recurrent Transformer for the block Zb.

If Z can be divided into multiple segments, then the keys and values of the last block of the first
segment are cached to be utilised by the first block of the second segment, and so on.

The outputs of all blocks O1, . . . , OB are then concatenated vertically:

H = [O1; . . . ;OB ] ∈ Rmax{lu,lv}×8d. (23)

Average Pooling: The dout-dimensional node representations of u and v are finally extracted from
H:

hu = Mean (H[:, : 4d])Wout + bout ∈ Rdout , (24)

hv = Mean (H[:, 4d :])Wout + bout ∈ Rdout , (25)

where Wout ∈ R4d×dout and bout ∈ Rdout are trainable parameters, and dout is the output dimension.

A.3 Decoder
We inherit the decoders for the two downstream tasks, dynamic link prediction and dynamic node
classification, from DyGLib. For dynamic link prediction, the decoder is a simple MLP with one
ReLu-activated hidden layer. For dynamic node classification, the decoder is an MLP with two
ReLu-activated hidden layers. The outputs of both decoders are just one value.

B Evaluation Methodology: Additional Details
B.1 Evaluation Metrics
We use two metrics: the Average Precision (AP) and the Area Under the ROC (AUC).

In AP, the model being evaluated outputs a probability p for each query. The threshold τ is the
probability at which the predictions are considered positive, i.e., for p ≥ τ the query is considered
positive, while for p < τ the query is considered negative. Average Precision is given by AP =
1
N

∑N
i=1 (r(τi)− r(τi−1)) p(τi), where p(τi) and r(τi) are the precision and recall values for the

classifier with threshold τi. We set r(τ0) = 0. We use scikit’s [85] implementation of this metric.

Area Under the ROC (AUC-ROC): The ROC curve plots recall against the false positive rate at
various classification thresholds. AUC-ROC measures the area under the ROC curve, where higher
scores are desirable. Intuitively, one can think of AUC-ROC as the probability that the model can
distinguish a random positive sample from a random negative sample. Again, we use scikit’s [85]
implementation of this metric.
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B.2 Design Details
Our implementation is integrated into DyGLib [134]. Our implementation of BRT is heavily based
on Phil Wang’s implementation, which can be found under the following link: https://github.
com/lucidrains/block-recurrent-transformer-pytorch/tree/main.

B.3 Model Parameters
We split the datasets into train, val, and test by the ratio of 70%-15%-15%. We set the mini-batch
size to 100, and use the Adam optimizer [67]. We use a learning rate of 0.0001, and train for 50
epochs. We employ early stopping with a patience of either 0 or 2 depending on the dataset. The node
mini-batch sampling is done sequentially in order to follow the chronological order of the interactions.
Other model parameters are as follows:

• Dimension of aligned encoding d: 50
• Dimension of time encoding dT : 100
• Dimension of neighbor co-occurrence encoding dC : 50
• Dimension of output representation dout: 172
• Number of BRT cells: 2
• Position of the BRT horizontal cell: 1
• Number of attention heads I: 4
• BRT block size: 16
• BRT segment size: 32
• BRT number of state vectors: 32

Our methodology for hyperparameter selection follows DyGLib, an established library and bench-
marking infrastructure for dynamic graph learning [134]. The values used for the parameter s2
(defined in 3.3) were found by means of a grid search over the universe {0, 1} for the datasets MOOC
and LastFM, and over {0, 1, 2, 4} for the dataset CanParl. These universes were chosen so as to test
the model both with and without higher order structures. In the latter case, we keep the amount of
considered 2-hop interactions low (in the order of magnitude of the amount of 1-hop interactions s1).
This allows us to consider higher order structures while avoiding adding potential noise. Finer tuning
was limited by the available compute resources.

B.4 Dataset Details
The details of the datasets illustrated in Section 4 as well as dataset dependent parameters are in
Table 1.

Data Interactions Sequence length Patch size Dropout rate Patience

MOOC 411,749 256 8 0.1 2
LastFM 1,293,103 512 16 0.1 0
Can. Parl. 74,478 2048 64 0.1 2

Table 1: Overview of model configurations over various datasets.
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