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ABSTRACT
Python has become the de facto language for scientific computing.
Programming in Python is highly productive, mainly due to its rich
science-oriented software ecosystem built around the NumPy mod-
ule. As a result, the demand for Python support inHigh Performance
Computing (HPC) has skyrocketed. However, the Python language
itself does not necessarily offer high performance. In this work, we
present a workflow that retains Python’s high productivity while
achieving portable performance across different architectures. The
workflow’s key features are HPC-oriented language extensions and
a set of automatic optimizations powered by a data-centric inter-
mediate representation. We show performance results and scaling
across CPU, GPU, FPGA, and the Piz Daint supercomputer (up to
23,328 cores), with 2.47x and 3.75x speedups over previous-best
solutions, first-ever Xilinx and Intel FPGA results of annotated
Python, and up to 93.16% scaling efficiency on 512 nodes.
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1 INTRODUCTION
Python is the language to write scientific code [30]. The capabil-
ity to write and maintain Python code with ease, coupled with a
vast number of domain-specific frameworks and libraries such as
SciPy, Matplotlib, scikit-learn [62], or pandas [74], leads to high
productivity. It also promotes collaboration with reproducible sci-
entific workflows shared using Jupyter notebooks [42]. Therefore,
numerous scientific fields, ranging from machine learning [2, 61]
to climate [72] and quantum transport [75] have already adopted
Python as their language of choice for new developments.
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Figure 1: Data-Centric Python overview.

As a result, the scientific community now pushes to also make
Python the language for writing high-performance code. For most
scientific applications, NumPy arrays [36] provide the core data
structures, interfaces, and BLAS and LAPACK library interoper-
ability. NumPy is optimized to provide efficient data structures
and fast library implementations for many common operations.
However, the performance benefits of NumPy are tied to optimized
method calls and vectorized array operations, both of which evap-
orate in larger scientific codes that do not adhere to these con-
straints. Therefore, there is a significant performance gap between
the numpythonic code-style and general code written by domain
scientists.

InHPC, the threePs (Productivity, Portability, Performance)
are driving recent developments in infrastructure and programming
model research to ensure sustainability [14, 53]. In Python, this
drive has resulted in many optimized domain-specific libraries and
frameworks [2, 17, 46, 61, 72]. Simultaneously, the diversity of the
hardware landscape motivated the creation of interface libraries,
such as CuPy [56], which provides replacements to NumPy opera-
tions for NVIDIA and AMD GPUs, and MPI4PY [22], which offers
direct MPI bindings. Lower-level interfaces, such as Cython [12],
promise high performance at the cost of writing code that resembles
C, and lazy evaluation of array operations [10, 43, 61] that enable
high-performance runtime systems. Furthermore, a variety of JIT
compilers [17, 34, 45] address the performance degradation result-
ing from the interpreter. Last but not least, runtime systems [10],
distributed tasking (Dask) [23], and remote procedure calls [52] fur-
ther scale Python to distributed systems. Despite the abundance of
choices, Python still struggles: while each approach works towards
one or more of the Ps, none of them supports all at the same time.
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We propose a way to bridge the gap between the three Ps for
Python programming using a data-centric paradigm. In particular,
we empower Python users with an automatic optimization and spe-
cialization toolbox, which spans the entire Python/HPC ecosystem
(Fig. 1) — from the code, through communication distribution, to
hardware mapping. At the core of the toolbox, we use the State-
ful Dataflow multiGraphs (SDFG) [13] data-centric intermediate
representation, which enables these optimizations in the form of
multi-level data movement transformations. With a data-centric
representation, as opposed to library bindings, all data dependen-
cies and potential overlap are inferred statically from the code, and
interpreter overhead is mitigated. Compared with implicit and lazy
evaluation approaches, we also provide a set of extensions that
give power users complete control over parallelism and partition-
ing schemes, using pythonic principles and syntax (e.g., returning
“local view” objects from global data, but allowing users to operate
on the “global view” as well).

We demonstrate a wide variety of benchmarks using the auto-
matic toolbox over annotated Python code, both on individual
nodes and the Piz Daint supercomputer. For the former, we show
that it consistently outperforms other automatic approaches on
multicore CPUs and GPUs, and for the first time show automatic
Python HPC compilation results for both Xilinx and Intel FPGAs,
which vastly differ in architecture and programming language. In
distributed-memory environments, we show high scaling efficiency
and absolute performance compared with distributed tasking. Thus,
we realize all three Ps within a single system.

The paper makes the following contributions:

• (Productivity) Definition of high-performance Python, a
methodology to translate it to a data-centric IR, and exten-
sions to improve said conversion via explicit annotation.

• (Portability) A set of automatic optimizations for CPU, GPU
and FPGA, outperforming the best prior approaches by 2.47×
on CPU and 3.75× on GPU on average (geometric mean [1]).

• (Performance) Automatic implicitMPI transformations and
communication optimizations, as well as explicit distribution
management, with the former scaling to 512 nodes with up
to 93.16% efficiency.

2 DATA-CENTRIC PYTHON
The central tenet of our approach is that understanding and opti-
mizing data movement is the key to portable, high-performance
code. In a data-centric programming paradigm, three governing
principles guide development and execution:

(1) Data containers must be separate from computations.
(2) Data movement must be explicit, both from data containers

to computations and to other data containers.
(3) Control flow dependencies must be minimized, they shall

only define execution order if no implicit dataflow is given.

In the context of SDFGs, examples of data containers are arrays
and scalar data, which have a NumPy-compatible data type, such
as int32 or float64.

Python is an imperative language and, therefore, not designed
to express data movement. Its terseness makes the process of un-
derstanding dataflow difficult, even when comparing to other lan-
guages like C and FORTRAN, as the types of variables in Python
code cannot be statically deduced.

Below, we define high-performance Python programs, discuss
the decorators that we must add to Python code to make the
dataflow analyzable, and then detail how we translate them into
the SDFG data-centric intermediate representation.

2.1 High Performance Python
Our approach supports a large subset of the Python language that
is important for HPC applications. The focus lies on NumPy ar-
rays [36] and operations on such arrays. In addition to the low-
overhead data structures NumPy offers, it is central to many frame-
works focused on scientific computing, e.g., SciPy, pandas, Mat-
plotlib. As opposed to lazy evaluation approaches, high-performance
Python must take control flow into account to auto-parallelize and
avoid interpreter overhead. This tradeoff between performance
and productivity is necessary because Python features such as co-
routines are not statically analyzable and have to be parsed as
“black-boxes”. To combat some of these Python quirks, we propose
to augment the language with analyzable constructs useful for HPC.

2.2 Annotating Python
The Data-Centric (DaCe) Python frontend parses Python code and
converts it to SDFGs on a per-function basis. The frontendwill parse
only the Python functions that have been annotated explicitly by
the user with the @dace.program decorator. DaCe programs can then
be called like any Python function and perform Just-in-Time (JIT)
compilation.

Static symbolic typing. To enable Ahead-of-Time (AOT) com-
pilation, which is of key importance for FPGAs and for reusing
programs across different inputs, SDFGs should be statically typed.
Therefore, the function argument data types are given as type an-
notations, providing the required information as shown below:

N = dace.symbol ()
@dace.program
def jacobi_1d(TSTEPS: dace.int32 ,

A: dace.float64[N],
B: dace.float64[N]):

for t in range(1, TSTEPS ):
B[1:-1] = 0.33333 * (A[:-2]+A[1: -1]+A[2:])
A[1:-1] = 0.33333 * (B[:-2]+B[1: -1]+B[2:])

The Python method jacobi_1d has three arguments; TSTEPS is a 32-
bit integer scalar, while A and B are double precision floating-point
vectors of length N. The symbolic size N, defined with dace.symbol,
indicates that the vector sizes can be dynamic (but equal). All sub-
sets are then symbolically defined (e.g., the subset B[1:-1] becomes
B[1:N-1], and symbolic manipulation can then be performed in
subsequent data-centric transformations.

Parametric parallelism. An important feature that has no direct
expression in Python is a loop that can run in parallel. Our approach
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Python SDFG Equivalent

Declarations and Types

Primitive data types Scalar data container

NumPy array Array data container

Assignments

Assignments Tasklet or map scope with incoming
and outgoing memlets for read/writ-
ten operands

Array subscript Memlet (dataflow edge)

Statements

Branching (if) Branch conditions on state transi-
tion edges

Iteration (for) Conditions, increments on state
transition edges

Control-flow
(break, continue, return)

Edge to control structure or function
exit state

Functions

Function calls (with source) and
decorator for argument types

Nested SDFG for content, memlets
reduce shape of inputs and outputs

External/Library calls Tasklet with callback or Library
Node

Table 1: Mapping of Python syntax and constructs to SDFG.

supports explicit parallelism declaration through map scopes, simi-
larly to an N-dimensional parallel for. There are two ways to
take advantage of this feature. DaCe provides the dace.map iterator,
which can be used in Python code as a substitute to the Python
built-in range iterator and generates a map scope when parsed:

for i, j in dace.map[0:M, 0:N]:
A[i, j] = B[j, i]

Alternatively, the DaCe framework provides a LoopToMap transfor-
mation that detects for-loops in the IR, whose iterations can be
executed safely in parallel (using symbolic affine expression analy-
sis), and converts them to map scopes automatically.

2.3 From Python to DaCe
We turn to present the SDFG intermediate representation (IR) and a
novel data-centric Python translation procedure in tandem. While
previous work [13] converted a restricted, low-level Python def-
inition of the SDFG IR, here we aim to cover the majority of the
Python/NumPy language constructs via static analysis and fallback
for unsupported features. We summarize the equivalence between
Python constructs and SDFG counterparts in Table 1, and present
the generation of an SDFG from a Python program using the gemm

kernel as an example:

@dace.program
def gemm(alpha , beta , C, A, B):

C[:] = alpha * A @ B + beta * C

out = inp1 * inp2

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

A[𝑖𝑖, 𝑘𝑘]

tmp0[𝑖𝑖,𝑘𝑘]

A[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

alpha

alpha

(a) Element-wise array operation
tmp0 = alpha * A.

out = inp

𝐶𝐶

𝑖𝑖, 𝑗𝑗 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑗𝑗 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

C[𝑖𝑖, 𝑗𝑗]

alpha (+)

C[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

alpha (+)

(b) Augmented assignment with
WCR.

Figure 2: SDFG representations

Our first pass traverses the Python AST to simplify the expres-
sions into individual steps, similar to static single assignment [7],
respecting order of operations:

tmp0 = alpha * A
tmp1 = tmp0 @ B
tmp2 = beta * C
C = tmp1 + tmp2

The first step in the above code multiplies each element of A
with alpha. SDFGs view data containers separately from the com-
putations the data are part of, as per the first data-centric tenet.
These containers are represented by oval Access nodes. In the first
statement, these refer to tmp0, alpha, and A (see Fig. 2a).

In SDFGs, connections to data containers are calledmemlets, and
they describe the data movement — the edge direction indicates
whether it is read or written, and its contents refer to the part of the
data container that is accessed. Computations consume/produce
memlets and can be divided into multiple types:

(1) Stateless computations (Tasklets, shown as octagons), e.g.,
representing scalar assignments such as a = 1.

(2) Calls to external libraries (Library Nodes, folded rectangles),
that represent calls to functions that are not in the list of
functions decorated with dace.program. Matrix-matrix mul-
tiply is a common and important operation tmp1 = tmp0 @ B

and is contained in a Library Node called MatMul.
(3) Calls to other SDFGs (Nested SDFGs, rectangles), which rep-

resent calls to functions decorated with dace.program.
(4) Maps are a particular type of Nested SDFGs matching the

language augmentation previously discussed in Section 2.2
and express that the content can be processed in parallel.

Element-wise array operations automatically yield Map scopes.
Similarly, assignments to arrays yield a Map scope, containing a
Tasklet with the element-wise assignment. Augmented assignments
such as C += 1 are a special case where the output is also an input
when no data races are detected.

Parallel maps can be augmented to express howWrite-Conflict
Resolution (WCR) should determine the value of data when multiple
sources write to it concurrently. If data races are found, the outgoing
edges are marked as dashed. E.g., the following program requires
WCR (SDFG representation is shown in Fig. 2b):

for i, j in dace.map[0:NI, 0:NJ]:
alpha += C[i, j]
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By connecting the inputs and outputs of computations with the
containers explicitly, the data-centric representation of a program
can be created. To represent control dependencies, we encapsulate
code driven by pure data dependencies in States (bright blue regions)
in the SDFG. The states are connected with State Transition Edges
(in blue) that can be annotated with control flow, representing loops,
branch conditions, and state machines in general. The following
Python program is represented by the SDFG in Fig. 3:

for i in range(NI):
C[i] += 1

𝑖𝑖 = 0
out = inp + 1

𝐶𝐶
C[𝑖𝑖]

C[𝑖𝑖]𝑖𝑖 < 𝑁𝑁𝑁𝑁

𝑖𝑖 += 1

𝑖𝑖 ≥ 𝑁𝑁𝑁𝑁 𝐶𝐶
Figure 3: SDFG representation of a Python for-loop. There
are two states (left: guard, right: body) connected by control
flow (state transition) edges that define the loop range.

The above loop also is an excellent use case for the LoopToMap trans-
formation (Section 2.2) since its iterations are independent.

In the conversion to the SDFG IR, we also replace calls to library
functions (e.g., np.linalg.solve) and object methods (A.view())
with custom subgraphs or Library Nodes, which users can extend
for other libraries and object types via a decorated function. Fol-
lowing this initial conversion, the resulting SDFG contains a state
per statement and a nested SDFG per function call.

2.4 Dataflow Optimization
The direct translation to SDFGs creates a control-centric version
of the code, which matches the Python semantics but does not
contain dataflow beyond a single statement (similarly to compilers’
-O0). To mitigate this, we run a pass of IR graph transformations
that coarsens the dataflow, exposing a true data-centric view of the
code (similar to -O1). The transformations include redundant copy
removals, inlining Nested SDFGs, and others (14 in total), which
only modify or remove elements in the graph, such that they cannot
be applied indefinitely.

To understand this pass, we showcase one transformation — state
fusion — which allows merging two states where the result does
not produce data races. For example, the two states containing the
assignments below can be merged:

tmp0 = alpha * A
tmp1 = tmp0 @ B

Internally, the transformation matches a subgraph pattern of two
states connected together and compares source and sink Access
nodes using symbolic set intersection. If no data dependency con-
straints are violated, Access nodes are either fused (if they point to
the same memory, see Fig. 4) or set side by side, creating multiple
connected components that can run in parallel.

All transformations in the DaCe framework follow the same
infrastructure, either matching a subgraph pattern or allowing
the user to choose an arbitrary subgraph [13]. While the dataflow

out = inp1 * inp2

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

A[𝑖𝑖, 𝑘𝑘]

tmp0[𝑖𝑖,𝑘𝑘]

A[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

alpha

alpha

MatMult

𝐵𝐵𝑡𝑡𝑡𝑡𝑎𝑎𝑡

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

B[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp1[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

out = inp1 * inp2

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

A[𝑖𝑖, 𝑘𝑘]

tmp0[𝑖𝑖,𝑘𝑘]

A[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

alpha

alpha

MatMult

𝐵𝐵

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

B[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp1[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

StateFusion

Figure 4: State fusion of tmp0 = alpha * A and tmp1 = tmp0 @ B.

coarsening pass happens automatically as part of our proposed tool-
box, one can also apply transformations manually and separately,
without changing the original Python source code (we color such
“performance engineering codes” in cyan):

sdfg = gemm.to_sdfg ()
sdfg.apply(StateFusion)

2.5 Python Restrictions
Some features available in Python are incompatible with our defi-
nition of high performance Python, and are discussed below. This
does not exclude programs using the full feature set of Python from
analysis, but calls to functions containing unsupported features
will not benefit from our optimization. The restricted features are:

(1) Python containers (lists, sets, dictionaries, etc.) other than
NumPy arrays as arguments, as they are represented by
linked lists and difficult to analyze from a dataflow view.
Note that this does not preclude internal containers (which
can be analyzed) and list comprehensions.

(2) Dynamic typing: fixed structs are allowed in SDFGs, so fields
can be transformed and their class methods into functions
decorated with the dace.program decorator. However, dy-
namic changes to classes or dynamic types are unsupported
as their structure cannot be statically derived.

(3) Control-dependent variable state (i.e., no scoping rules), e.g.,
the following valid Python:

x = ...
if x > 5:

y = np.ndarray ([5, 6], dtype=np.float32)
# use y (will raise exception if x <= 5)

(4) Recursion. This is a limitation of the data-centric program-
ming model [13], as recursion is a control-centric concept
that is not portable across platforms.

After performing the full translation and coarsening, the re-
sulting gemm kernel can be seen in Figure 5 (left-hand side). This
data-centric representation can now use the SDFG IR capabilities
to further optimize and map the original Python code to different
architectures and distributed systems.
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out = inp1 * inp2

tmp1[𝑖𝑖, 𝑗𝑗]

𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

A[𝑖𝑖, 𝑘𝑘]

tmp0[𝑖𝑖,𝑘𝑘]

tmp0 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁

alpha

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

MatMult

A 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁alpha

tmp0 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁

𝐵𝐵

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

B[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp1[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp1[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

out = inp1 * inp2

𝑖𝑖, 𝑗𝑗 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

tmp2

C[𝑖𝑖, 𝑗𝑗]

tmp2[𝑖𝑖, 𝑗𝑗]

tmp2 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁

beta

𝐶𝐶𝑏𝑏𝑏𝑏𝑡𝑡𝑎𝑎
C 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁beta

tmp2 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁

out = inp1 + inp2

𝑖𝑖, 𝑗𝑗 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝐶𝐶

tmp0[𝑖𝑖, 𝑗𝑗]

C[𝑖𝑖, 𝑗𝑗]

C 0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁

tmp1[𝑖𝑖, 𝑗𝑗]

cblas_dgemm(…);

𝐵𝐵𝑡𝑡𝑡𝑡𝑎𝑎𝑡

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

B[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp1[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

cublasDgemm(…);
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𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑗𝑗 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑡𝑡𝑡𝑡𝑎𝑎1

B[𝑘𝑘, 𝑗𝑗]

B[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp1[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[𝑖𝑖,𝑘𝑘]

FPGA Optimized IR (Streaming)

Generic IR

C++

C++

Figure 5: Dataflow-coarsened GEMM SDFG and specializations for different architectures.

3 PORTABILITY AND PERFORMANCE
The translated data-centric Python programs can now be optimized
for performance on different hardware architectures. In this sec-
tion, we propose a novel set of data-centric passes to auto-optimize
and specialize SDFGs to run at state-of-the-art performance on
CPUs, GPUs, and FPGAs, all from the same source IR. The pro-
gramming portability is very high since our approach starts from
the same Python codes parsed to the same SDFGs. Although the
final optimized IRs may differ, the process can be automatic, and
the user needs only to select the architecture to specialize for. In
our evaluation, we only discuss results produced in an automated
fashion.

3.1 Automatic Optimization Heuristics
As mentioned above, DaCe provides a user-extensible set of graph
transformations. Yet, the framework does not perform them auto-
matically [13], to endow performance engineers with fine-grained
control and promote separation of concerns. Furthermore, DaCe
includes tools and graphical interfaces to assist users with manual
optimization without the explicit need for an expert. For productiv-
ity purposes, however, we believe that prototyping fast data-centric
Python programs should be possible with minor code modifications.

By observing the common pitfalls in generated code from SD-
FGs vs. what a performance engineer would write, we propose a
set of transformation heuristics for SDFGs that yield reasonable
performance in most cases (-O3 compiler equivalent). This pass can
be performed automatically (configurable) or using the following
decorator:

@dace.program(auto_optimize=True , device =...)

where device can be DeviceType.{CPU,GPU,FPGA}.
Our auto-optimizer performs the following passes in order:
(1) Map scope cleanup: Remove “degenerate” maps of size 1,

repeatedly apply the LoopToMap transformation (Section 2.2),
and collapse nested maps together to form multidimensional

maps. The latter also increases the parallelism of GPU kernels
as a by-product.

(2) Greedy subgraph fusion: Collect all the maps in each state,
fusing together the largest contiguous subgraphs that share
the same (or permuted) iteration space or the largest subset
thereof (e.g., fusing the common three dimensions out of
four). We use symbolic set checks on memlets to ensure that
the data consumed is a subset of the data produced.

(3) TileWCRmaps: Tile (configurable size) parallel maps with
write-conflicts that result in atomics, in order to drastically
reduce such operations.

(4) Transient allocationmitigation: Move constant-sized and
small arrays to the stack, and make temporary data contain-
ers persistent (i.e., allocated upon SDFG initialization) if their
size only depends on input parameters. This nearly elimi-
nates dynamic memory allocation overhead.

Beyond the above general-purpose heuristics, we apply more
transformations depending on the chosen device: For CPUs, we try
to increase parallelism by introducing the OpenMP collapse clause.
For GPU and FPGA, we perform the {GPU,FPGA}TransformSDFG au-
tomatic transformations [13], which introduce copies to/from the
accelerator and convert maps to accelerated procedures.

On the FPGA, we perform a few further transformations that di-
verge from the “traditional” fused codes in HPC: we create separate
connected components (regions on the circuit) to stream off-chip
(DRAM) memory in bursts to the program. Between computations,
we try to modify the graph’s structure to be composed of separate
pipelined units that stream memory through FIFO queue Access
nodes (we call this transformation StreamingComposition). This also
enables further transformations to the graph to create systolic ar-
rays during hardware specialization.

From this point, the only remaining step to lower the SDFG is to
specialize the Library Nodes to their respective fastest implementa-
tions based on the target platform.
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Figure 6: Distributions of DaCe’s total compilation times.
3.2 Library Specialization
Library Nodes, such as the MatMul operation in gemm, can be ex-
panded to a wide variety of implementations. An expansion is de-
fined similarly to a transformation, as a replacement subgraph to a
single node, and can specialize its behavior.

We demonstrate specializations of matrix multiplication in Fig. 5.
In particular, one can expand a Library Node into a C++ tasklet,
calling an external function from MKL or CUBLAS (CPU, CUDA
optimized IR in the figure); into an optimized subgraph (e.g., FPGA
optimized IR, here using the Streamed expansion); or into a “native”
SDFG subgraph (Generic IR).

In the automatic heuristics, we employ a priority list of imple-
mentations per platform, starting from the fast library calls, through
optimized versions, and if all fail to expand (e.g., if the multiplica-
tion occurs within a kernel), we expand to the “native” SDFG. This
yields an SDFG that can both be further optimized by performance
engineers, and execute at reasonable performance out-of-the-box.

Users can employ the DaCe API to create their own libraries and
Library Nodes [25]. This process is comparable to creating bindings.

3.3 Ahead-of-Time Compilation
DaCe provides extensive support for AOT compilation, due to the
risk of overheads JIT compilation introduces in an HPC environ-
ment. Namely, DaCe provides the capability of AOT compilation if
the decorated function’s arguments are type-annotated as described
in Section 2.2. A decorated function or an SDFG can be directly com-
piled to a shared library through a Python script. Alternatively, the
user can employ the sdfgcc command-line tool to compile SDFGs.

The compilation process utilizes specialized backends to generate
optimized code for each supported architecture [13]. For example,
C++ code is generated for CPUs, while the Nvidia GPU backend
outputs C++ and CUDA programs. For FPGAs we utilize Vitis HLS
and OpenCL for Xilinx and Intel architectures, respectively.

In Fig. 6 we present the distributions of DaCe’s total compilation
times on CPU, GPU, and FPGA for the set of benchmarks presented
in Section 3.4. This time includes parsing the Python code, auto-
optimizing and compiling with GCC, NVCC, Intel OpenCL SDK, or
the Xilinx Vitis compiler. 90% of the CPU and GPU codes compile
in less than 15s, while there is a single outlier above one minute.
On FPGA architectures, synthesis, placement and routing typically
takes hours, rendering DaCe’s overhead negligible.

3.4 Evaluation
In the following, we show results for single node shared memory
parallel programs created using data-centric Python for CPU, GPU

and FPGA, and compare these with other frameworks: NumPy over
the CPython interpreter, Numba, Pythran, and CuPy. We collect
a set of existing Python codes from different scientific and HPC
domains [3, 5, 8, 9, 15, 20, 37, 41, 49, 51, 60, 67, 70–72, 75], as well as
a NumPy version of Polybench [63] ported from the C benchmark.
In this adaptation, we strive to express the algorithms of the original
benchmark in a way that is natural to a Python programmer. E.g.,
in gemm, 2mm, and 3mm, the matrix-matrix product is implemented
with @, Python’s dedicated operator for matrix multiplication [29].
All the data used are double-precision floating point numbers or
64-bit integers for CPU and GPU, while the FPGA tests use single-
precision floating point numbers and 32-bit integers.

3.4.1 Experimental Setup. The CPU and GPU evaluations are per-
formed on a machine running CentOS 8, with 1.5 TB of main
memory, two Intel Xeon Gold 6130 CPUs (2x16 cores), and an
NVIDIA V100 GPU (CUDA version 11.1) with 32 GB of RAM. We
use CPython 3.8.5 as part of an Anaconda 3 environment. We test
NumPy 1.19.2 with Intel MKL support, Numba 0.51.2 with Intel
SVML support, the latest Pythran version from their GitHub repos-
itory [33] (commit ID 09349c5), and CuPy 8.3.0. For all frameworks
that need a separate backend compiler, we use GCC 10.2.0, with all
the performance flags suggested by the developers. To put high-
performance Python into the perspective of low-level C implemen-
tations, we also compare the applications adapted from Polybench
with the original Polybench/C [63] benchmark, compiled with GCC
and the Intel C Compiler with automatic parallelization enabled
(icc -O3 -march=native -mtune=native -parallel).

We evaluate FPGA performance on two different boards from
either major FPGA vendor; a Bittware 520N accelerator with an
Intel Stratix 10 2800 GX FPGA and the Xilinx Alveo U250 accelerator
board. Intel FPGA kernels are built with the Intel OpenCL SDK for
FPGA and Quartus 20.3 targeting the p520_max_sg280h shell, and
Xilinx kernels are built with the Vitis 2020.2 compiler targeting the
xilinx_u250_xdma_201830_2 shell.

For the DaCe Python versions, we annotate types and symbolic
shapes on the decorated functions to enable AOT compilation and
work with FPGAs. We do not annotate loops as dace.maps and keep
them in their original form, leaving parallelization for the automatic
heuristics (Section 3.1).

We compare the performance of the different frameworks and
compilers using runtime as our primary metric of execution. Unless
otherwise mentioned, we run each benchmark ten times and report
the median runtime and 95% nonparametric confidence interval
(CI) [39].

3.4.2 Benchmarking Results. CPU results are presented in Fig. 7.
The right-most column contains NumPy’s execution runtime for
each of the benchmarks annotated on the y-axis. Each of the other
columns contains the speedup (green tint and upward arrow) or
slowdown (red tint and downward arrow) of execution compared
to NumPy for each of the competing Python frameworks and Poly-
bench C versions (compiled with ICC or GCC). Furthermore, we
compute the 95% CI using bootstrapping [27] and annotate its size
(as superscript in brackets) as a percentage of the median; values
less than 1% are omitted (Fig. 7 uses vector graphics, and readers
can zoom in with a PDF viewer if any values are not readable due to
their size). The upper part of the chart aggregates the benchmarks
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Figure 7: CPU runtime and speedup over NumPy.

using the geometric mean of the speedups over NumPy. Numba
and Pythran have fallback modes for Python code that fails to parse.
In such cases, we measure the runtime of the fallback mode.

The figure shows an overall improvement in DaCe Python’s per-
formance, both over the Python compilers and the optimizing C
compilers. Specifically, the subgraph fusion transformation capabil-
ities surpass those of Numba. This is especially apparent in stencils,
where the difference can be in orders of magnitude. In applications
such as crc16, all compiled implementations successfully eliminate
interpreter overhead. Shorter kernels benefit from the C versions
due to runtime (and timing) overhead mitigation. It also appears
that with control-flow heavy codes (e.g., nussinov), simple C code
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Figure 8: CuPy and DaCe GPU runtime (lower is better).

can be better optimized by GCC and ICC over generated code. It is
worth noting that on some applications, NumPy is faster than the C
versions: this is because of the performance benefits of vectorized
NumPy code compared with explicit, sequential loops. An excep-
tional case is 3mm, which consists of three matrix multiplications.
ICC pattern matches the matrix-matrix product and links to MKL,
achieving similar performance to the Python frameworks. On the
other hand, GCC does not compile the unoptimized C code to an
executable that uses MKL, leading to lower performance.

Fig. 8 presents the runtime of applications that were successfully
transformed to run on GPU. As with CPU, auto-optimizing DaCe
consistently outperforms or is equivalent to CuPy, 3.75x (geomean)
faster. The auto-optimization passes contribute to these results,
mainly attributing to subgraph fusion and avoiding intermediate
allocations on shorter applications. Due to redundant copy removal
and view semantics being native to the SDFG, we see a particular
improvement on stencils, e.g., heat3d. Although CuPy-optimized
code could potentially employ similar transformations [64], as far
as we know, this cannot be performed out-of-the-box. The user
must explicitly define element-wise or reduction based kernels,
significantly changing the code. There is one instance where CuPy
outperforms DaCe — resnet. This is due to a suboptimal vectorized
representation of convolution in the Python source code, which
translates to a loop of summations. In our generated code, this
automatically results in many unnecessary atomic operations, even
if tiled. The issue can be easily mitigated with further manual
transformations (changing the maps’ schedules) after the fact.

FPGA results can be seen in Fig. 9, where there is no comparison
point as no other framework compiles high-performance Python
directly. Although both platforms use different languages and fea-
tures (e.g., accumulators), applications can be synthesized for both
from the same annotated Python code. There is a noticeable differ-
ence in performance, especially on stencil-like applications, likely
resulting from Intel FPGA’s compiler toolchain superior stencil pat-
tern detection. However, this can also be mitigated with subsequent
manual transformations on the SDFG or augmenting the automatic
heuristics decision-making process to transform stencils explicitly.
Library Node expansions take device-specific features into account.
For example, when there are accumulations (e.g., GEMV), we take
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advantage of hardened 32-bit floating-point accumulation on In-
tel FPGAs, which allows single-precision numbers to be directly
summed into an output register. On Xilinx FPGAs, and, in general,
for 64-bit floating-point accumulation, such native support does
not exist. Therefore, we perform accumulation interleaving [24]
across multiple registers to avoid loop-carried dependencies.

3.4.3 Discussion. While DaCe already outperforms existing li-
braries, this is not the end of the optimization process. Instead,
the generated SDFGs can be starting points for optimization by
performance engineers. The provided transformations and API can
be used to eliminate sources of slowdown in the above applications
or extended to use new, domain-specific transformations [25, 40].
Furthermore, the applications can also be adapted to distributed
memory environments, where the productivity and performance
benefits can be even greater.

4 SCALABLE DISTRIBUTED PYTHON
The data-centric representation of Python programs can serve as a
starting point for creating distributed versions. These distributed
SDFGs abandon the global view of the data movement in favor of
a local one. Like Message Passing, the flow of data in distributed
memory is explicitly defined through Library Nodes. This approach
allows for fine-grained control of the communication scheme and
better mapping of SDFGs to code using optimized communication
libraries.

In this Section, We show how to design transformations that
specialize parallel map scopes to support distributed memory sys-
tems. We then show how to optimize such distributed data-centric
programs. Finally, we show how developers can take control of
the distribution entirely by expanding the original Python code
with distributed communication while still allowing data-centric
optimization to occur.

4.1 Transforming for Scale
Leveraging the data-centric representation, we can create transfor-
mations that convert specific shared-memory parallel kernels into
distributed memory. The advantage of this approach is that once
such a transformation is available, we can apply it to any subgraph
in any SDFG that matches the same pattern. Furthermore, trans-
formations can be compounded, building on each other to achieve
complex results. We focus again on the gemm kernel for illustrating
the transformations. As we shall show, the transformations extend
beyond and automatically distribute other kernels as well.

Distributing global view element-wise operations. We distribute
these by following a scatter-gather pattern, broadcasting (scalars)
or scattering (arrays) input data containers from the root rank to
the machine nodes, performing local computation, and gathering
or reducing the outputs. By the nature of element-wise operations,
careful selection of the array distribution parameters is not al-
ways necessary. The primary constraint is that each rank receives
matching subsets of data, allowing it to perform local computation
without further communication. Therefore, the most efficient dis-
tribution for contiguous arrays is to treat them as uni-dimensional
and scatter them with MPI_Scatter (1-D block distribution). How-
ever, in cases where the result of an element-wise operation is
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Figure 9: FPGA runtime, Large instance, single precision.

consumed by, e.g., a matrix-matrix product or a stencil computa-
tion, it is beneficial to preserve the dimensionality of the arrays.
For this reason, the transformation has optional parameters for the
block sizes per dimension, leading to block or block-cyclic distri-
butions. We offer implementations that use PBLAS [55] methods,
such as p?gemr2d and p?tran, and MPI derived data types, which
have previously demonstrated performance benefits [68]. Applying
the above transformation with block distributions on the opera-
tion tmp0 = alpha * A transforms the SDFG subgraph as shown in
Fig. 10. We emphasize that these transformations are applied to an
SDFG without changing the data-centric program code:

sdfg.apply(DistributeElementWiseArrayOp)

out = inp1 * inp2

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝑁𝑁𝑁𝑁 − 1 ∧ 𝑘𝑘 ∈ 0. .𝑁𝑁𝑁𝑁 − 1

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

A[𝑖𝑖, 𝑘𝑘]

tmp0[𝑖𝑖,𝑘𝑘]

A[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

alpha

alpha

Distribution

out = inp1 * inp2

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖, 𝑘𝑘 |𝑖𝑖 ∈ 0. .𝐵𝐵𝐼𝐼 − 1 ∧ 𝑘𝑘 ∈ 0. .𝐵𝐵𝐾𝐾 − 1

𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡

lA[𝑖𝑖, 𝑘𝑘]

ltmp0[𝑖𝑖, 𝑘𝑘]

A[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

ltmp0 0:𝐵𝐵𝐼𝐼, 0:𝐵𝐵𝐾𝐾

alpha

alpha

Bcast Scatter
lA 0:𝐵𝐵𝐼𝐼 , 0:𝐵𝐵𝐾𝐾alpha

𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
lA 0:𝐵𝐵𝐼𝐼 , 0:𝐵𝐵𝐾𝐾alpha

𝑡𝑡𝑡𝑡𝑎𝑎𝑡

tmp0[0:𝑁𝑁𝑁𝑁, 0:𝑁𝑁𝑁𝑁]

Gather
ltmp0 0:𝐵𝐵𝐼𝐼, 0:𝐵𝐵𝐾𝐾

Figure 10: Distribution of element-wise array operation.

Distributing Library Nodes. We also create expansions for Library
Nodes to distributed SDFG subgraphs. For example, the matrix-
matrix and matrix-vector products expand to the aforementioned
PBLAS library calls, along with the corresponding distribution of
inputs and gathering outputs. Using PBLAS requires the definition
of a process grid. The DaCe PBLAS library environment handles
this automatically using BLACS [54]. The grid’s parameters are free
symbols that can be chosen by the user or take default values.

4.2 Optimizing Communication
Creating distributed versions of the operations separately from each
other will perform correctly but poorly on real applications. Thus,
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we can use the data-centric aspect of the SDFG IR, which can track
access sets through memlets to remove such communication bot-
tlenecks automatically. Doing so separately from the distribution
transformations allows users to write more pattern-matching dis-
tribution transformations without worrying about inter-operation
communication, on the one hand; and on the other hand, allows
the system to find such optimizations in any input code (e.g., if
manually-written with communication redundancy).

One example of such a transformation is redundant gather-
scatter removal. Consider the SDFG representation of gemm, shown
in Fig. 5. We distribute all three element-wise array operations and
we expand the MatMult node to a call to pdgemm. Due to the pro-
duced scatter and gather operations, the outputs tmp1 of pdgemm and
tmp2 of beta * C will be connected to the last element-wise array
operation tmp1 + tmp2 as shown in the following pseudo-code:

pdgemm (..., ltmp1 , ...)
tmp1 = gather(ltmp1)
ltmp1 = scatter(tmp1)
ltmp2 = beta * lC
tmp2 = gather(ltmp2)
ltmp2 = scatter(tmp2)
lC = ltmp1 + ltmp2
...

The above sequence of operations yields redundant communication
on tmp1 and tmp2 and can therefore be omitted (the transformation
for tmp1 is shown in Fig. 11). By following the data movement and
inspecting other Access nodes in the state, data dependencies of
the global array can be inferred. Furthermore, since we know the
Scatter and Gather node semantics, we can check whether the data
distributions match. We note that users can use the DaCe API to
define transformations to, e.g., optimize the re-distribution of data
when the distributions do not match. If the distributions are 2D
block-cyclic, such a transformation could, among other solutions,
utilize PBLAS and a p?gemr2d Library Node to efficiently bypass the
Scatter and Gather operations.

Combing the above transformations, the shared-memory gemm

program from Section 2.3 can be converted to distributed-memory
as follows, again without altering the code of the dace-centric
Python program (type annotations omitted for brevity):

@dace.program
def gemm(alpha , beta , C, A, B):

C[:] = alpha * A @ B + beta * C

dist_sdfg = gemm.to_sdfg ()
dist_sdfg.apply(DistributeElementWiseArrayOp)
dist_sdfg.expand_library_nodes('PBLAS ')
dist_sdfg.apply(RemoveRedundantComm)

4.3 Assuming Direct Control via Local Views
The implicit, global view approach works well for a plethora of
Python programs that make heavy use of high-level array opera-
tions. However, as highly-tuned HPC applications often use specific
partitioning schemes, our data-centric toolbox also provides explicit
control via Python annotations. As opposed to the existing tools
that manage communication implicitly, the aim of the interface is

pdgemm

𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡
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Figure 11: Redundant communication elimination.

to use (num)pythonic concepts to retain productivity while maxi-
mizing performance. E.g., the jacobi_2d stencil below would yield
unnecessary Scatter and Gather collectives at every timestep:
@dace.program
def jacobi_2d(TSTEPS: dace.int32 , A: dace.float64[N,N],

B: dace.float64[N,N]):
for t in range(1, TSTEPS ):

B[1:-1,1:-1] = 0.2 * (A[1:-1,1:-1] + A[1:-1,:-2]
+ A[1:-1,2:] + A[2:,1:-1] + A[:-2,1:-1])

A[1:-1,1:-1] = 0.2 * (B[1:-1,1:-1] + B[1:-1,:-2]
+ B[1:-1,2:] + B[2:,1:-1] + B[:-2,1:-1])

For this reason, our data-centric approach allows the user to
express arbitrary communication patterns by integrating explicit
communication directly into Python. The above shared-memory
data-centric Python program can be modified to be distributed:
@dace.program
def half_step(inpbuf: dace.float64[lNx+2, lNy+2],

outbuf: dace.float64[lNx+2, lNy +2]):
req = np.empty((8,), dtype=MPI_Request)
dace.comm.Isend(inpbuf[1, 1:-1], nn, 0, req [0])
# ...
dace.comm.Irecv(inpbuf [1:-1, -1], ne, 2, req [7])
dace.comm.Waitall(req)
outbuf [1+ noff:-1-soff , 1+woff:-1-eoff] = 0.2*(

inpbuf [1+ noff:-1-soff , 1+woff:-1-eoff] +
# ...
inpbuf[noff:-2-soff , 1+woff:-1-eoff])

@dace.program
def j2d_dist(TSTEPS: dace.int32 , A: dace.float64[N, N],

B: dace.float64[N, N]):
lA = np.zeros((lNx+2, lNy+2), dtype=A.dtype)
lB = np.zeros((lNx+2, lNy+2), dtype=B.dtype)
lA[1:-1, 1:-1] = dace.comm.BlockScatter(A)
lB[1:-1, 1:-1] = dace.comm.BlockScatter(B)
for t in range(1, TSTEPS ):

half_step(lA, lB)
half_step(lB, lA)

A[:] = dace.comm.BlockGather(lA[1:-1, 1:-1])
B[:] = dace.comm.BlockGather(lB[1:-1, 1:-1])

In the above program, we distribute the arrays A and B into 2D
blocks at the beginning. The local views lA,lB are then computed
and communicated via explicit halo exchange, using Isend, Irecv,
and Waitall MPI calls in every time-step.

While this approach is similar to the mpi4py bindings, there
are two distinct advantages to the data-centric approach with an
explicit local view. First, the MPI calls are integrated into the pro-
gram’s dataflow with Library Nodes, enabling the above trans-
formations and other automatic code generation features such as
overlapping. Second, explicit Isend and Irecv calls communicate
strided data using the MPI vector datatype, avoiding extraneous
copies. The latter is also an example of using symbolic information
on the graph to assert that high performance is attained — our MPI
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Figure 12: Distributed runtime (dashed lines) and scaling efficiency (solid lines) on 23,328 cores of Piz Daint.

derived data type creation code, which is created once for each data
type, relies on the symbol values not changing over the run. E.g.,
the initialization of the inpbuf[1:-1, 1] data type:

MPI_Datatype ntype;
MPI_Type_vector(lNx , 1, lNy+2, MPI_DOUBLE , &ntype);
MPI_Type_commit (&ntype);

would raise a performance warning in DaCe Python if the sizes
may change at runtime. This avoids potential mistakes that even
experienced performance engineers can make in large HPC codes.

4.4 Evaluation
To measure the performance of distributed data-centric programs,
we conduct scaling experiments on the multi-core partition of
the Piz Daint supercomputer. Each node has two 18-core Intel
E5-2698v3 CPUs and 64GB of memory. The nodes are connected
through a Cray Aries network using a Dragonfly topology. We
benchmark a subset of the Polybench kernels from Section 3.4,
which could be automatically transformed to use distributed mem-
ory (Section 4.1); adi, bicg, doitgen, gemm, gemver, gesummv, k2mm,
k3mm, mvt, jacobi_1d, and jacobi_2d. We compare this work with
Dask [23] v2.31 and Legate [10] (commit ID febd3bf [57]), two
state-of-the-art distributed tasking Python frameworks, in weak
scaling from 1 to 1,296 processes (648 nodes). Dask Array [4] scales
a variety of NumPy workflows, including element-wise array op-
erations, reductions, matrix-matrix products, and linear algebra
solvers, among others. Legate is providing a drop-in replacement
for the NumPy API to accelerate and distribute Python codes.

We select initial problem sizes that fit typical HPC workloads
without having excessive runtime. The kernels’ scaling factors and
the initial problem sizes for each framework are presented in Tab. 2.
For kernels with computational complexity ranging from 𝑂 (𝑛)
to 𝑂 (𝑛2), we target a runtime in the order of 100ms. For kernels
with higher complexity, we target a runtime in the order of 1s.
We note that with the problem sizes selected for benchmarking
data-centric Python and Legate, Dask either runs out of memory
or exhibits unstable performance. Thus, we halved the problem
sizes for Dask but still encountered out-of-memory errors at larger
node counts. Furthermore, several issues rendered testing Legate at
scale difficult. With the assistance of the developers, many of those

Benchmark F Initial Problem Size S.F.
atax DaCe/Legate 20000, 25000 all

√
𝑆(𝑀,𝑁 ) Dask 10000, 12500

bicg DaCe/Legate 25000, 20000 all
√
𝑆(𝑀,𝑁 ) Dask 12500, 10000

doitgen DaCe/Legate 128, 512, 512 (𝑆,−,−)(𝑁𝑅,𝑁𝑄,𝑁𝑃 ) Dask 128, 512, 512
gemm DaCe/Legate 8000, 9200, 5200 all 3√

𝑆(𝑁𝐼, 𝑁 𝐽 , 𝑁𝐾 ) Dask 4000, 4600, 2600
gemver DaCe/Legate 10000 √

𝑆(𝑁 ) Dask 5000
gesummv DaCe/Legate 22400 √

𝑆(𝑁 ) Dask 11400
jacobi_1d DaCe/Legate 1000, 24000 (−, 𝑆)(𝑇 ,𝑁 ) Dask 1000, 24000
jacobi_2d DaCe/Legate 1000, 1300 (−,

√
𝑆)(𝑇 ,𝑁 ) Dask 1000, 1300

k2mm DaCe/Legate 6400, 7200, 4400, 4800 all 3√
𝑆(𝑁𝐼, 𝑁 𝐽 , 𝑁𝐾,𝑁𝑀 ) Dask 3200, 3600, 2200, 2400

k3mm DaCe/Legate 6400, 7200, 4000, 4400, 4800 all 3√
𝑆(𝑁𝐼, 𝑁 𝐽 , 𝑁𝐾,𝑁𝐿,𝑁𝑀 ) Dask 3200, 3600, 2000, 2200, 2400

mvt DaCe/Legate 22000 √
𝑆(𝑁 ) Dask 11000

Table 2: Distributed benchmarks, initial problem sizes for
the different frameworks (F), and scaling factors (S.F.) as a
function of the number of processes 𝑆 .

problems were solved; however, others remained. We could only
run each benchmark up to a fraction of the total nodes available,
either due to runtime errors or because a single execution did not
finish within 10 minutes of allocated time. We annotate Fig. 12 with
these errors.

We ignore the time needed for initializing and distributing data
and only measure the main computation and communication time.
We run all frameworks using default parameters where possible,
i.e., “auto" as chunk size in Dask and block distributions (not block-
cyclic, which would allow the user to fine-tune the block-sizes) on a
2D process grid for DaCe. Furthermore, we spawn one process per
socket (2 processes per node) and 18 threads per process (equal to
the number of physical cores in a socket). Legate is executed with
parameters suggested by the developers: two NUMA domains per
node, 28GB of memory and one CPU with 16 threads per domain.
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Fig. 12 presents the distributed runtime and scaling efficiency of
DaCe, Dask, and Legate. DaCe exhibits four different efficiency pat-
terns. In doitgen, the workload is distributed in an embarrassingly
parallel manner, and no communication is needed. Therefore, the
efficiency is close to perfect. The kernels atax, bicg, gemver, gesummv,
and mvt compute matrix-vector products and scale very well until 64
processes, where the drop in efficiency becomes more pronounced,
but remains above 60% for all data points. The matrix-matrix prod-
uct kernels, gemm, k2mm, and k3mm, exhibit lower efficiency, which is
consistent with the expected behavior of MKL-ScaLAPACK [44].
Finally, the stencil kernels’ efficiency (jacobi_1d and jacobi_2d)
falls between the last two categories of kernels. On the other hand,
Dask and Legate exhibit a sharp drop in efficiency in almost all
kernels immediately from the second process. An exception is the
jacobi_1d kernel, where Dask has higher efficiency than DaCe up
to 16 processes. However, this is possible due to Dask being much
slower than DaCe (over 30x on the same problem size), allowing for
much higher communication-computation overlap. On BLAS-heavy
benchmarks, Legate matches the runtime of DaCe on a single CPU,
whereas in others we observe slowdowns of 1.7–15×. In the bench-
marks that scale to a large number of nodes (atax, bicg, gemver,
gesummv, and mvt), Legate’s efficiency, after the initial drop, remains
constant.

DaCe uses MPI for communication and links to the optimized
Cray implementation. Legate is built on top of the Legion run-
time [11], which employs the GASNet library [16], a networking
middleware implementing global-address space. Finally, Dask uses
TCP for inter-worker communication. Although the different com-
munication approaches cannot explain all performance discrepan-
cies, there are the most significant factors in the overall picture.

5 PRODUCTIVITY
Python is already a very productive language, especially for domain
scientists, due to its rich ecosystem described in Section 1. Data-
Centric Python is Python with extensions that themselves are valid
Python syntax. For example, the @dace.program decorator follows
the PEP 318 standard [28]. Therefore, Data-Centric Python essen-
tially inherits the Python language’s programming productivity.
Since performance is the most important metric in HPC, scientific
applications must eventually be lowered to a representation that
is amenable to low-level optimizations for the underlying archi-
tectures. Traditionally, this translates to writing these applications
in C, C++, and Fortran, among other device-specific languages.
Therefore, an HPC project must force the domain scientists to sacri-
fice productivity and work directly on the lower-level languages or
maintain two different code-bases. DaCe, and other frameworks that
accelerate Python, increase HPC productivity by bridging the code
that domain scientists want to write with the code that achieves
high performance.

6 RELATEDWORK
Approaches similar to our own targeting Python code have already
been introduced and compared with in Sections 1, 3, and 4. In
this section, we further discuss relevant frameworks, libraries, and
approaches towards the three Ps.

Productivity. The complexity of optimizing applications, com-
bined with the repetitive nature of performance engineering for
specific domains, has given rise to a wide variety of Domain-Specific
Languages (DSLs) [19, 38, 59, 69] and embedded DSLs, particularly
in Python [46, 72]. In the latter category, a notable example is
deep learning frameworks, which use Python’s various capabili-
ties to construct readable code that performs well. PyTorch [61]
uses object-oriented programming to construct deep neural net-
works as modules, relying on reflection to detect parameters and
nonblocking calls for asynchronous execution to avoid interpreter
overhead. TensorFlow [2] used Python’s weak typing system to
construct graphs from Python functions but has recently transi-
tioned to “eager” execution to improve productivity, making codes
more readable and simplifying debugging.

Portability. In the past three decades, compilers have undergone
a transition from all-pairs solutions (between source languages and
hardware platforms) to funneling through Intermediate Represen-
tations (IR), on which they can perform language- and platform-
agnostic optimization passes. Although DaCe is currently devel-
oped in Python, many other research compilers are based on the
LLVM [47] infrastructure and IR. There is an ongoing movement
in the compiler community towards Multi-Level IRs [48], in which
a multitude of IR dialects can retain domain- and platform-specific
information, in turn enabling domain-specific optimizations [35].
MLIR performs optimization passes on each dialect to compile pro-
grams, followed by lowering passes to subsequent dialects, down
to hardware mapping. This feature could be utilized to implement
DaCe Library Nodes. The data-centric transformation API is also
shared by languages such as Halide [65], which enables users to
invoke schedule optimizations separately from program definition.

Performance portability. Aimed at keeping a consistent ratio of
performance to peak performance across hardware [73], it is the
core premise of several standards [6, 21, 31, 32, 58]. In directive-
based frameworks [21, 58], pragma statements are added to C/C++
and FORTRAN programs to introduce parallelism, similarly to our
proposed annotations. In kernel-based frameworks [6, 31, 32], ker-
nels are constructed as functions with a limited interface and of-
floaded to target devices, such as CPUs, GPUs, or FPGAs. As each
platform requires its own set of directives, kernel parameters, or
sometimes kernel implementations, programs often contain multi-
ple codes for each target. To resolve such issues, HPC languages
such as Chapel [18] and HPF [66] define high-level implicit ab-
stractions used as parallel primitives. Also popular in the HPC
world are performance-portable libraries, embedded within C++,
notably Kokkos [26], RAJA [50], and Legion [11] (which powers
Legate [10]). These allow integrating heterogeneous and distributed
systems through task-based abstractions, data dependency analysis
(e.g., Legion’s logical regions), and common parallel patterns. Such
patterns can also be found in NumPy, and the SDFG can be seen as
a generalization of these graphs with symbolic data dependencies.

7 CONCLUSION
Discussion. While distributed SDFGs forego the global view of

data movement to facilitate the design of custom communication
schemes, future work could explore the trade-offs between a more
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pythonic approach to communication and extracting the best per-
formance. Moreover, improvements to existing transformations,
e.g., Vectorization, and implementation of new ones could increase
the out-of-the-box performance, reducing the need for manual op-
timization.

We present Data-Centric Python — a high-performance subset of
Python with annotations that produces supercomputer-grade HPC
codes. Based on the SDFG intermediate representation, we show
how a pipeline of static code analysis and dataflow transformations
can take input NumPy code, leverage its vectorized nature, and map
it efficiently to CPUs, GPUs, and FPGAs, outperforming current
state-of-the-art approaches on each platform by at least 2.4x.

The resulting data-centric programs effectively eliminate the
performance pitfalls of Python, including interpreter overheads
and lack of dataflow semantics for library calls, the latter being cru-
cial for running at scale. Many even outperform baselines written
in C code. A key feature of the data-centric toolbox is giving users
explicit control when necessary, rather than making assumptions
at the framework level. We evaluate Data-Centric Python on a dis-
tributed environment and show that the parallel efficiency remains
above 90%, even on hundreds of nodes. These promising results
indicate that productive coding with Python can scale and map to
heterogeneous compute architectures, setting the once-scripting
language at the same level as FORTRAN, C, and other HPC giants.
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