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OPERATING ON FUNDAMENTALLY different principles 
than conventional computers, quantum computers 
promise to solve a variety of important problems that 
seemed forever intractable on classical computers. 
Leveraging the quantum foundations of nature, the 
time to solve certain problems on quantum computers 
grows more slowly with the size of the problem than on 
classical computers—this is called quantum speedup. 
Going beyond quantum supremacy,2 which was the 
demonstration of a quantum computer outperforming 
a classical one for an artificial problem, an important 
question is finding meaningful applications (of 
academic or commercial interest) that can realistically 
be solved faster on a quantum computer than on 
a classical one. We call this a practical quantum 
advantage, or quantum practicality for short.

There is a maze of hard problems 
that have been suggested to profit 
from quantum acceleration: from 
cryptanalysis, chemistry and materi-
als science, to optimization, big data, 
machine learning, database search, 
drug design and protein folding, fluid 
dynamics and weather prediction. But 
which of these applications realisti-
cally offer a potential quantum advan-
tage in practice? For this, we cannot 
only rely on asymptotic speedups but 
must consider the constants involved. 
Being optimistic in our outlook for 
quantum computers, we identify clear 
guidelines for quantum practicality 
and use them to classify which of the 
many proposed applications for quan-
tum computing show promise and 
which ones would require significant 
algorithmic improvements to become 
practical and relevant.

To establish reliable guidelines, or 
lower bounds for the required speed-
up of a quantum computer, we err on 
the side of being optimistic for quan-
tum and overly pessimistic for clas-
sical computing. Despite our overly 
optimistic assumptions, our analysis 
shows a wide range of often-cited ap-
plications is unlikely to result in a 
practical quantum advantage without 
significant algorithmic improvements. 
We compare the performance of only 
a single classical chip fabricated like 
the one used in the NVIDIA A100 GPU 
that fits around 54 billion transistors15 
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	˽ Most of today’s quantum algorithms may 
not achieve practical speedups. Material 
science and chemistry have a huge 
potential and we hope more practical 
algorithms will be invented based on our 
guidelines
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bandwidth, quantum computers will be 
practical for “big compute” problems on 
small data, not big data problems.

	˽ Quadratic speedups delivered by 
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advantage without significant 
improvements across the entire software/
hardware stack.
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computers. Similarly, a potentially ex-
ponential quantum speedup in linear 
algebra problems12 vanishes when the 
matrix must be loaded from classical 
data, or when the full solution vector 
should be read out. Generally, quan-
tum computers will be practical for 
“big compute” problems on small data, 
not big data problems.

Crossover scale. With quantum 
speedup, asymptotically fewer opera-
tions will be needed on a quantum 
computer than on a classical computer. 
Due to the high operational complexity 
and slower gate operations, however, 
each operation on a quantum comput-
er will be slower than a correspond-
ing classical one. As sketched in the 
accompanying figure, classical com-
puters will always be faster for small 
problems and quantum advantage 
is realized beyond a problem-depen-
dent crossover scale where the gain 
due to quantum speedup overcomes 
the constant slowdown of the quan-
tum computer. To have real practical 
impact, the crossover time must be 
short, not more than weeks. Constants 
matter in determining the utility for 
applications, as with any runtime esti-
mate in computing.

Compute performance. To model 
performance, we employ the well-
known work-depth model from clas-
sical parallel computing to determine 
upper bounds of classical silicon-
based computations and an exten-
sion for quantum computations. In 
this model, the work is the total num-
ber of operations and applies to both 
classical and quantum executions. In 
Table 1, we provide concrete examples 
using three types of operations: logi-
cal operations, 16-bit floating point, 
and 32-bit integer or fixed-point 
arithmetic operations for numerical 
modeling. For the quantum costs, 
we consider only the most expensive 
parts in our estimates, again benefit-
ing quantum computers; for arithme-
tic, we count just the dominant cost 
of multiplications, assuming addi-
tions are free. Furthermore, for float-
ing point multiplication, we consider 
only the cost of the multiplication of 
the mantissa (10 bits in fp16). We ig-
nore all further overheads incurred by 
the quantum algorithm due to revers-
ible computations, as well as the sig-
nificant cost of mapping to a specific 

with an optimistic assumption for a 
hypothetical quantum computer that 
may be available in the next decades 
with 10,000 error-corrected logical 
qubits, 10ms gate time for logical op-
erations, the ability to simultaneously 
perform gate operations on all qubits 
and all-to-all connectivity for fault tol-
erant two-qubit gates.a

I/O bandwidth. We first consider 
the fundamental I/O bottleneck that 
limits quantum computers in their 
interaction with the classical world, 

a	 Note that no quantum error correction scheme 
exists today that allows simultaneous execu-
tion of gates and all-to-all connectivity without 
at least a O (√N ) slowdown for N qubits.

which determines bounds for data in-
put and output bandwidths. Scalable 
implementations of quantum random 
access memory (QRAM8,9) demand a 
fault-tolerant error corrected imple-
mentation and the bandwidth is then 
fundamentally limited by the number 
of quantum gate operations or mea-
surements that can be performed per 
unit time. We assume only a single gate 
operation per input bit. For our opti-
mistic future quantum computer, the 
resulting rate is 10,000-times smaller 
than for an existing classical chip (see 
Table 1). We immediately see that any 
problem limited by accessing classical 
data, such as search problems in data-
bases, will be solved faster by classical 

Quantum speedup.

The time needed to solve certain problems with quantum algorithms increases 
more slowly than that of any known classical algorithm as the problem size N 
increases. To be practical, however, we need more than an asymptotic speedup: 
the crossover time where quantum advantage gets realized needs to be reasonably 
short and the crossover problem size not too large. (For illustrative purposes, the 
time axis is scaled such that the quantum algorithm is a straight line.)
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Table 1. Performance comparison.

GPU ASIC Future Quantum

I/O Bandwidth 10,000 Gbit/s 10,000 G/s 1 Gbit/s

Operation throughput

16-bit floating point 195 Top/s 550 Top/s 10.5 kop/s

32-bit integer 9.75 Top/s 215 Top/s 0.83 kop/s

binary (Boolean logical) 4,992 Top/s 77,000 Top/s 235 kop/s

We compare the peak performance of a single classical chip that can be 
manufactured today (like an NVIDIA A100 GPU, or an ASIC with a similar number 
of transistors) with a future quantum computer with 10,000 error-corrected logical 
qubits, 10ms gate time for logical operations and all-to-all connectivity. We consider 
an estimate of the I/O bandwidth (namely the number of operations per second) 
and three types of operations: logical binary operations, 16-bit floating point, 32-bit 
integer or fixed-point arithmetic multiply add operations.
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hardware architecture with limited 
qubit connectivity.

Crossover times for classical and 
quantum computation. To estimate 
lower bounds for the crossover times, 
we consider that while both classical 
and quantum computers must evalu-
ate the same functions (usually called 
oracles) that describe a problem, 
quantum computers require fewer 
evaluations thereof due to quantum 
speedup. At the root of many quan-
tum acceleration proposals lies a qua-
dratic quantum speedup, including 
the well-known Grover algorithm.10,11 
For such an algorithm, a problem 
that needs X function calls on a quan-
tum computer requires quadratically 
more, namely on the order of X2 calls 
on a classical computer. To overcome 
the large constant performance differ-
ence between a quantum computer 
and a classical computer, which Table 
1 shows to be more than a factor of 
1010, many function calls X ≫ 1010 is 
needed for the quantum speedup to 
deliver a practical advantage. In Table 
2, we estimate upper bounds for the 
complexity of the function that will 
lead to a cross-over time of 106 sec-
onds, or approximately two weeks.

We see that with quadratic speedup 
even a single floating point or integer 
operation leads to crossover times of 
several months. Furthermore, at most 
68 binary logical operations can be 
afforded to stay within our desired 
crossover time of two weeks, which is 
too low for any non-trivial application. 
Keeping in mind that these estimates 
are pessimistic for classical compu-
tation (a single of today’s classical 
chips) and overly optimistic for quan-
tum computing (only considering the 
multiplication of the mantissa and as-
suming all-to-all qubit connectivity), 
we come to the clear conclusion that 
quadratic speedups are insufficient 
for practical quantum advantage. 
The numbers look better for cubic or 
quartic speedups where thousands 
or millions of operations may be fea-
sible, and we conclude, similarly to 
Babbush et al.,3 that at least cubic or 
quartic speedups are required for a 
practical quantum advantage.

As a result of our overly optimistic 
assumptions in favor of quantum com-
puting, these conclusions will remain 
valid even with significant advances 

ear systems of equations, such as fluid 
dynamics in the turbulent regime, 
weather, and climate simulations will 
not achieve quantum advantage with 
current quantum algorithms in the 
foreseeable future. We also conclude 
that the identified I/O limits constrain 
the performance of quantum comput-
ing for big data problems, unstruc-
tured linear systems, and database 
search based on Grover’s algorithm 
such that a speedup is unlikely in 
those cases. Furthermore, Aaronson 
et al.1 show the achievable quantum 
speedup of unstructured black-box 
algorithms is limited to O(N4). This 
implies that any algorithm achieving 
higher speedup must exploit structure 
in the problem it solves.

These considerations help with 
separating hype from practicality in 
the search for quantum applications 
and can guide algorithmic develop-
ments. Specifically, our analysis shows 
it is necessary for the community to 
focus on super-quadratic speedups, 
ideally exponential speedups, and one 
needs to carefully consider I/O bottle-
necks when deriving algorithms to 
exploit quantum computation best. 
Therefore, the most promising can-
didates for quantum practicality are 
small-data problems with exponential 
speedup. Specific examples where this 
is the case are quantum problems in 
chemistry and materials science,5 
which we identify as the most promis-
ing application. We recommend using 
precise requirements models4 to get 

in quantum technology of multiple or-
ders of magnitude.

Practical and impractical applica-
tions. We can now use these consid-
erations to discuss several classes of 
applications where our fundamen-
tal bounds draw a line for quantum 
practicality. The most likely problems 
to allow for a practical quantum ad-
vantage are those with exponential 
quantum speedup. This includes the 
simulation of quantum systems for 
problems in chemistry, materials sci-
ence, and quantum physics, as well 
as cryptanalysis using Shor’s algo-
rithm.16 The solution of linear systems 
of equations for highly structured 
problems12 also has an exponential 
speedup, but the I/O limitations dis-
cussed above will limit the practicality 
and undo this advantage if the matrix 
has to be loaded from memory instead 
of being computed based on limited 
data or knowledge of the full solution 
is required (as opposed to just some 
limited information obtained by sam-
pling the solution).

Equally important, we identify like-
ly dead ends in the maze of applica-
tions. A large range of problem areas 
with quadratic quantum speedups, 
such as many current machine learn-
ing training approaches, accelerating 
drug design and protein folding with 
Grover’s algorithm, speeding up Mon-
te Carlo simulations through quan-
tum walks, as well as more traditional 
scientific computing simulations in-
cluding the solution of many non-lin-

Table 2. Crossover operation counts for quantum algorithms with quadratic, cubic, and 
quartic speedups.

Maximum number of operations for practical

Operation type quadratic speedup cubic speedup quartic speedup

16-bit floating point 0.2 45,800 2,800,000

32-bit integer 0.003 1,630 130,000

Binary (logical) 68 12,500,000 712,000,000

We determine the number of operations that can be afforded per function call (see the 
accompanying figure) for a quantum computer to show an advantage over a classical 
computer using a quantum algorithm with quadratic, cubic, and quartic quantum 
speedup. The number of oracle calls required to reach the crossover point with a 
quadratic, cubic, and quartic speedup is computed using the relative runtimes of a single 
oracle evaluation, and the total runtime of 106 seconds is then used to compute how 
many basic operations can be afforded in each oracle call. Since we make optimistic 
assumptions for a future quantum computer, we ignore overheads of reversible arithmetic 
for quantum computing and limit the classical computer to a single chip that can be 
manufactured today. The actual crossover operation counts will be significantly smaller. 
A similar analysis for quantum algorithms with exponential speedups yields promising 
operation budgets for all datatypes.
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cation circuits would be significantly 
cheaper. If we assume a transistor-to-
gate ratio of 1013 and that 50% of the 
total chip area is used for control logic 
of a dataflow ASIC with the required 
buffering, we can fit 54.2B/(7k • 10 • 2) 
= 387k fp16 units. Similarly, we can 
fit 54.2B(18k • 10 • 2) = 151k int32, or 
54.2B/(50 • 10 • 2) = 54.2M bin2 units 
on our hypothetical chip. Assuming a 
cycle time of 0.7ns, this leads to a total 
operation rate of 0.55 fp16, 0.22 int32, 
and 77.4 bin Pop/s for an application-
specific ASIC with the A100’s technol-
ogy and budget. The ASIC thus leads to 
a raw speedup between approximately 
2x and 15x over a programmable cir-
cuit. Thus, on classical silicon, the 
performance ranges approximately 
between 1013 and 1016 op/s for binary, 
int32, and fp16 types.

Hypothetical future quantum computer. 
To determine the costs of N-bit multi-
plication on a quantum computer, we 
choose the controlled adder from Gid-
ney6 and implement the multiplication 
using N single-bit controlled adders, 
each requiring 2N CCZ magic states. 
These states are produced in so called 
“magic state factories” that are imple-
mented on the physical chip. While 
the resulting multiplier is entirely se-
quential, we found that this construc-
tion allows for more units to be placed 
on one chip than for a low-depth adder 
and/or for a tree-like reduction of par-
tial products since the number of CCZ 
states is lower (and thus fewer magic 
state factories are required), and the 
number of work-qubits is lower. The 
resulting multiplier has a CCZ-depth 
and count of 2N2 using 5N − 1 qubits 
(2N input, 2N − 1 output, N ancilla for 
the addition).

To compute the space overhead 
due to CCZ factories, we first use the 
analysis of Gidney and Fowler7 to com-
pute the number of physical qubits per 
factory when aiming for circuits (pro-
grams) using ≈ 108 CCZ magic states 
with physical gate errors of 10−3. We 
approximate the overhead in terms of 
logical qubits by dividing the physi-
cal space overhead by 2d2, where we 
choose the error-correcting code dis-
tance d = 2 • 312 to be the same as the 
distance used for the second level of 
distillation.7 Thus we divide Gidney 
and Fowler’s 147,904 physical qubits 
per factory (for details consult the an-

more reliable and realistic (less opti-
mistic) estimates in cases where our 
rough guidelines indicate a potential 
practical quantum advantage.

Methods
Here, we provide more details for how 
we obtained the numbers mentioned 
earlier. We compare our quantum 
computer with a single microprocessor 
chip like the one used in the NVIDIA 
A100 GPU.15 The A100 chip is around 
850mm2 in size and manufactured in 
TSMC’s 7nm N7 silicon process. A100 
shows that such a chip fits around 54.2 
billion transistors and can operator at 
a cycle time of around 0.7ns.

Determining peak operation 
throughputs. In Table 1, we provide 
concrete examples using three types of 
operations: logical operations, 16-bit 
floating point, and 32-bit integer arith-
metic operations for numerical model-
ing. Other datatypes could be modeled 
using our methodology as well.

Classical NVIDIA A100. According 
to its datasheet, NVIDIA’s A100 GPU, a 
SIMT-style von Neumann load store ar-
chitecture, delivers 312 tera-operations 
per second (Top/s) with half precision 
floating point (fp16) through tensor 
cores and 78Top/s through the normal 
processing pipeline. NVIDIA assumes 
a 50/50 mix of addition and multiplica-
tion operations and thus, we divide the 
number by two, yielding 195Top/s fp16 
performance. The datasheet states 
19.5Top/s for 32-bit integer operations, 
again assuming a 50/50 mix of addition 
and multiplication, leading to an effec-
tive 9.75Top/s. The binary tensor core 
performance is listed as 4,992Top/s 
with a limited set of instructions.

Classical special-purpose ASIC. Our 
main analysis assumes that we build 
a special-purpose ASIC using a similar 
technology. If we were to fill the equiv-
alent chip-space of an A100 with a spe-
cialized circuit, we would use existing 
execution units, for which the size is 
typically measured in gate equivalents 
(GE). A 16-bit floating point unit (FPU) 
with addition and multiplication func-
tions requires approximately 7kGE, a 
32-bit integer unit requires 18kGE,14 
and we assume 50GE for a simple bi-
nary operation. All units include op-
erand buffer registers and support a 
set of programmable instructions. We 
note that simple addition or multipli-

Our analysis shows 
a wide range 
of often-cited 
applications  
is unlikely to result 
in a practical 
quantum advantage 
without significant 
algorithmic 
improvements.
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cillary spreadsheet (field B40) of Gid-
ney and Fowler) by 2d2 = 2 • 312 and get 
an equivalent space of 77 logical qubits 
per factory.

For the multiplier of the 10-bit man-
tissa of an fp16 floating point number, 
we need 2 • 102 = 200 CCZ states and 5 • 
10 = 50 qubits. Since each factory takes 
5.5 cycles7 and we can pipeline the pro-
duction of CCZ states, we assume 5.5 
factories per multiplication unit such 
that multipliers do not wait for magic 
state production on average. Thus, each 
multiplier requires 200 cycles and 5N 
+ 5.5 • 77 = 50 + 5.5 • 77 = 473.5 qubits. 
With a total of 10,000 logical qubits, we 
can implement 21 10-bit multipliers on 
our hypothetical quantum chip. With 
10ms cycle time, the 200-cycle latency, 
we get the final rate of less than 105 cy-
cle/ s / (200 cycle/op) • 21= 10.5kop/s. For 
int32 (N=32), the calculation is equiva-
lent. For binary, we assume two input 
and one output qubit for the (binary) 
adder (Toffoli gate) which does not 
need ancillas. The results are summa-
rized in Table 1.

A note on parallelism. We assumed 
massively parallel execution of the ora-
cle on both the classical and quantum 
computer (that is, oracles with a depth 
of one). If the oracle does not admit 
such parallelization, for example, if 
depth = work in the worst-case scenar-
io, then the comparison becomes more 
favorable towards the quantum com-
puter. One could model this scenario by 
allowing the classical computer to only 
perform one operation per cycle. With a 
2GHz clock frequency, this would mean 
a slowdown of about 100,000 times for 
fp16 on the GPU. In this extremely un-
realistic algorithmic worst case, the 
oracle would still have to consist of only 
several thousands of fp16 operations 
with a quadratic speedup. However, we 
note that in practice, most oracles have 
low depth and parallelization across a 
single chip is achievable, which is what 
we assumed.

Determining maximum operation 
counts per oracle call. In Table 2, we list 
the maximum number of operations of 
a certain type that can be run to achieve 
a quantum speedup within a runtime 
of 106 seconds (a little more than two 
weeks). The maximum number of clas-
sical operations that can be performed 
with a single classical chip in 106 sec-
onds would be: 0.55 fp16, 0.22 int32, 
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and 77.4 bin Zop. Similarly, assuming 
the rates from Table 1, for a quantum 
chip: 7, 4, 2, and 350 Gop, respectively.

We now assume that all calcula-
tions are used in oracle calls on the 
quantum computer and we ignore 
all further costs on the quantum ma-
chine. We start by modeling algo-
rithms that provide polynomial Xk 
speedup, for small constants k. For 
example, for Grover’s algorithms,11  
k + 2. It is clear quantum computers are 
asymptotically faster (in the number 
of oracle queries) for any k >1. Howev-
er, we are interested to find the oracle 
complexity (that is, the number of oper-
ations required to evaluate it) for which 
a quantum computer is faster than a 
classical computer within the time-
window of 106 seconds.

Let the number of operations re-
quired to evaluate a single oracle call 
be M and let the number of required 
invocations be N. It takes a classical 
computer time Tc = Nk • M • tc, whereas 
a quantum computer solves the same 
problem in time Tq = Nk • M • tq where 
tc and tq denote the time to evaluate 
an operation on a classical and on a 
quantum computer, respectively. By de-
manding that the quantum computer 
should solve the problem faster than 
the classical computer and within 106 
seconds, we find

which allows us to compute the maxi-
mal number of basic operations per 
oracle evaluation such that the quan-
tum computer still achieves a practical 
speedup:

Determining I/O bandwidth. We use 
the I/O bandwidth specified in NVID-
IA’s A100 datasheet for our classical 
chips or the quantum computer, we as-
sume that one quantum gate is re-
quired per bit of I/O. Using all 10,000 
qubits for reading/writing, this yields 
an estimate of the I/O bandwidth B ≈ 
10,000

10–5  = 1Gbit/s. 
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