
spcl.inf.ethz.ch

@spcl_eth

Taming Unbalanced Training Workloads in Deep Learning with
Partial Collective Operations

Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Torsten Hoefler

ETH Zurich

Dan Alistarh

IST Austria

Feb. 22-26, 2020

San Diego, CA, US

PPoPP’20

spcl.inf.ethz.ch

@spcl_eth

The overall
objective function:

2

Deep learning training

Model parallelism

Dataset

P0 P1 P2

ξ is a data point
sampled from a
distribution D.

F is the loss
function.

w denotes
the model
parameters.

Training: optimize w to minimize f (using SGD).

spcl.inf.ethz.ch

@spcl_eth

3

Deep learning training

Pipeline parallelism

P0

P1

P2

Dataset

ξ is a data point
sampled from a
distribution D.

F is the loss
function.

w denotes
the model
parameters.

Training: optimize w to minimize f (using SGD).

The overall
objective function:

spcl.inf.ethz.ch

@spcl_eth

4

Deep learning training

Data parallelism

P0 P1 P2

Dataset

ξ is a data point
sampled from a
distribution D.

F is the loss
function.

w denotes
the model
parameters.

Training: optimize w to minimize f (using SGD).

Global synchronization
using Allreduce

The overall
objective function:

spcl.inf.ethz.ch

@spcl_eth

▪ Load imbalance on application level
▪ Recurrent Neural Networks

(RNN/LSTM/GRU)

▪ Transformers

5

Unbalanced training workloads

(One input

multiple outputs)
(Multiple inputs

multiple outputs)

(Multiple inputs

one output)

▪ Load imbalance on system level
▪ Performance variability on multitenant

cloud systems

▪ System or network noise

Different types of RNNs

Multitenant cloud system

Interrupts,
daemon,
page/cache
misses, et al.

Challenge: stragglers
dominate the performance.

spcl.inf.ethz.ch

@spcl_eth

6

Many-to-one RNN for video classification

h0 fw h1 fw h2 fw h3 hT
…

FC1

FC2

0.13
0.14
0.41
0.09
0.13
0.10

Playing
Basketball

x1 x2 x3 xT

Backward pass

L(WT)L(W3)L(W2)L(W1)

L(w)

RNN:
Workload is

proportional to T

spcl.inf.ethz.ch

@spcl_eth

7

Workload statistics for video classification

(a) Video length distribution for UCF101 dataset

Distribution: 201 ~ 3,410 ms
Mean: 1,235 ms
Standard deviation: 706 ms

Distribution: 29 ~ 1,776 frames
Mean: 187 frames
Standard deviation: 97 frames

(b) Runtime distribution for the mini-
batches to train a LSTM model on P100

spcl.inf.ethz.ch

@spcl_eth

8

[1] Vaswani, Ashish, Noam

Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia

Polosukhin. "Attention is all

you need." In Advances in

NeurIPS, pp. 5998-6008. 2017.

Transformer

Distribution: 179 ~ 3,482 ms
Mean: 475 ms
Standard deviation: 144 ms

Runtime distribution for the mini-batches to train
a Transformer model (using WMT16) on P100

知识就是力量。 Knowledge is power

power.

.

Encoder

Decoder

The workload is proportional to input_size * output_size .

? ?

spcl.inf.ethz.ch

@spcl_eth

▪ Compared with imbalanced applications (e.g., LSTM, Transformer), the load imbalance on
cloud servers is relatively light.

9

Training on Cloud

Runtime distribution on Google Cloud with 2xV100 GPUs
(batch size=256, ResNet-50 on ImageNet).

Distribution: 399 ~ 1,892 ms
Mean: 454 ms
Standard deviation: 116 ms

spcl.inf.ethz.ch

@spcl_eth

10

Deep learning training is robust

f(g)

g

g

p(g)

0 1

0.5

1-bit gradients
quantization

f(g)

g

f(g)

g

Top-kTop-k

Gradients
sparsification

Gossiping

Hidden units
dropoutP-1

P

P+1

Allreduce

spcl.inf.ethz.ch

@spcl_eth

W(1)

W(1)

W(2)

W(2)

Process0

Processn

W(0)

idle

idle

Time

(a) synch-SGD

11

Eager-SGD to solve the load imbalance problem

(b) eager-SGD

W(1)

W(1)

W(2)

W(2)

Process0

Processn

W(0)

Time

synch-allreduce synch-allreduce partial-allreduce partial-allreduce

Eager-SGD exploits the robustness of the training
by allowing allreduce on stale gradients.

Communication
participants

Number of steps for
update propagation

Consistency mode

D-PSGD [1] 2 O(P) synchronous

AD-PSGD [2] 1 O(logP) asynchronous

eager-SGD P 1 asynchronous

Gossip-based SGDs

spcl.inf.ethz.ch

@spcl_eth

▪ Two phases: the activation and the collective operation

12

Partial Allreduce operations

A
llr

e
d

u
ce

A
ct

iv
at

io
n

A
ct

iv
at

io
n

A
llr

e
d

u
ce

P0 P1 P2 P3 P3 schedule

S0

R0

S1

R1

S2

R2

S3

R3

R0 R1

S1 S0

S2 R2 R3

C0

C1S3

N1

N0

▪ Asynchronous execution: an
auxiliary thread would progress the
execution (activation and collective)
in the background.

▪ Multiple initiators: the same
operation is only executed once
even if we may have multiple
initiators, i.e. multiple processes
arrive at the same time.

spcl.inf.ethz.ch

@spcl_eth

▪ Two variants: solo allreduce [3] and majority allreduce.

▪ For solo, at least one process “actively” participates.

▪ For majority, a majority of processes must “actively” participate.

13

Solo allreduce and majority allreduce

Solo allreduce Majority allreduce

Initiator The fastest process A randomly specified process

Attributes Wait-free Wait for the randomly specified
initiator

The expectation of
the participants

Ω(1) Ω(P/2)

[3] Di Girolamo, Salvatore, Pierre Jolivet, Keith D. Underwood, and Torsten Hoefler. "Exploiting offload enabled network interfaces." In 2015 IEEE 23rd
Annual Symposium on High-Performance Interconnects, pp. 26-33. IEEE, 2015.

spcl.inf.ethz.ch

@spcl_eth

14

Implementation eager-SGD based on Tensorflow

1 All-
reduce

2 All-
reduce

 All-
reduce

 All-
reduce

3

4

Conv-BN

Conv-BN-ReLU

Conv-BN

Max Pool

Addition

forward pass

Conv-BN

Conv-BN-ReLU

Conv-BN

Max Pool

Addition

backward pass

control
dependency

Customized distributed optimizer based on Tensorflow

Eager-SGD utilizes the execution engine of TF to exploit the parallelism in the computation DAG.

spcl.inf.ethz.ch

@spcl_eth

15

Execution of eager-SGD

Computation thread

Communication thread

w t
0

Gt
1

w t
1

P0 P1

Gnull Gt
1

Gt
1

Gt
1

step t

partial-allreduce

sendbuff0

recvbuff0

sendbuff1

recvbuff1

(,)Gt
1 wt+1

1U
Gt

0

(,)Gt
1

Gt
0 Gt

0

sendbuff0

wt+1
0U

Gt+1
1

=Gt+1
0 +

Gt+1
1

+Gt+1
1

+Gt+1
1Gt+1

0'

partial-allreduce
step t+1

Gt
0

sendbuff0

recvbuff0

sendbuff1

recvbuff1

Gt+1
0'

Gt+1
0'

Gt+1
0'

1. Two processes and P1 is faster.

2. P1 finishes the calculation for the
gradients of step t, and triggers partial-
allreduce. P0 contributes NULL.

3. P0 finishes step t, and discovers partial-
allreduce is already done. P0 copies the
stale gradients to its send buffer.

4. P0 catches up P1 in step t+1. The stale
gradients are combined with the latest
gradients, and then commit to partial-
allreduce.

spcl.inf.ethz.ch

@spcl_eth

▪ For a learning rate value

,

eager-SGD converges after

iterations.

16

Convergence of eager-SGD

▪ Note the dependence in 𝜏
(staleness bound) and 𝑃-𝑄 (the
number of stale gradients) for
iterations T.

▪ Eager-SGD would converge
slower if too many stale
gradients are used.

Staleness
bound

The total
number of
processes

The number of
processes which
contribute the
latest gradients

spcl.inf.ethz.ch

@spcl_eth

▪ CSCS Piz Daint supercomputer.

▪ Cray Aries interconnected network.

▪ Cray MPICH 7.7.2 communication library.

▪ Each node contains a 12-core Intel Xeon E5-2690 CPU, and one NVIDIA Tesla P100 GPU.

▪ We compare eager-SGD with the allreduce-based synch-SGD (Horovod and Deep500), the
asynchronous centralized SGD (TF parameter server), and the gossip SGDs (D-PSGD, SGP).

17

Evaluation

Simulated load imbalance
(traces on cloud machine)

Inherent load imbalance

Table 1. Neural networks used for evaluation

spcl.inf.ethz.ch

@spcl_eth

18

Hyperplane regression (light load imbalance)

Synch-SGD vs eager-SGD for hyperplane regression using 8 GPUs.
"synch/eager-SGD-200/300/400" represent 200/300/400 ms load

imbalance injection for 1 out of 8 processes.

▪ Eager-SGD (solo) achieves 1.50x,
1.75x, and 2.01x speedup over
synch-SGD (Deep500), respectively.

▪ The loss value is equivalent with
synch-SGD (Deep500).

spcl.inf.ethz.ch

@spcl_eth

19

ResNet-50 on ImageNet (light load imbalance)
Synch-SGD vs eager-SGD for ResNet-50 on ImageNet using 64 GPUs. "synch/eager-SGD-

300/460" represent 300/460 ms load imbalance injection for 4 out of 64 processes.

▪ Eager-SGD (solo) achieves 1.25x and 1.29x speedup
over Deep500, respectively; 1.14x and 1.27x
speedup over Horovod, respectively. Top-1 accuracy
is almost equivalent (75.2% vs 75.8%).

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Asynch-PS D-PSGD SGP eager-SGD

Th
ro

u
gh

p
u

t
(s

te
p

s/
se

co
n

d
)

▪ Eager-SGD (solo) achieves 2.64x, 1.26x,
1.17x over aysnch-PS and gossip-based SGDs
(D-PSGD, SGP) respectively.

spcl.inf.ethz.ch

@spcl_eth

20

Top-1 test accuracy and runtime for LSTM on UCF101
using 8 GPUs.

eager-SGD
(solo)

eager-SGD
(majority)

Speedup over
Horovod

1.64x 1.27x

Top-1 test

accuracy

60.6% on average,

up to 70.4%

69.7% on average,

up to 72.8%

LSTM on UCF101 (severe load imbalance)

 a s s

s

a

u
 a

s

 a s

 a a

s

 a s

 a a

 s

 s

 s

spcl.inf.ethz.ch

@spcl_eth

21

Conclusion
1. Eager-SGD deals with the
imbalanced workloads using
partial allreduce operations.

2. Eager-SGD has two
variants, solo and majority.

4. For the future work, we will verify the idea of eager-SGD on model-averaging SGD algorithms.

Questions: shigang.li@inf.ethz.ch

3. Solo allreduce is suitable for light load
imbalance, while majority allreduce
works for severe load imbalance.

