
Parallel Algorithms for Finding Large Cliques in Sparse Graphs
Lukas Gianinazzi

1
, Maciej Besta

1
, Yannick Schaffner

2
, Torsten Hoefler

1

1
Department of Computer Science, ETH Zurich;

2
Department of Mathematics, ETH Zurich

ABSTRACT
We present a parallel 𝑘-clique listing algorithmwith improved work

bounds (for the same depth) in sparse graphs with low degeneracy

or arboricity. We achieve this by introducing and analyzing a new

pruning criterion for a backtracking search. Our algorithm has bet-

ter asymptotic performance, especially for larger cliques (when 𝑘

is not constant), where we avoid the straightforwardly exponen-

tial runtime growth with respect to the clique size. In particular,

for cliques that are a constant factor smaller than the graph’s de-

generacy, the work improvement is an exponential factor in the

clique size compared to previous results. Moreover, we present a

low-depth approximation to the community degeneracy (which

can be arbitrarily smaller than the degeneracy). This approxima-

tion enables a low depth clique listing algorithm whose runtime is

parameterized by the community degeneracy.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms.

KEYWORDS
parallel graph algorithms; clique listing; arboricity; degeneracy;

1 INTRODUCTION
Finding large cliques has many applications in the social sciences,

bioinformatics, computational chemistry, and others [1, 8, 12, 23,

33, 34, 43, 48, 51, 52]. As the problem is NP-hard and remains hard

even when parameterized by the size of the clique 𝑘 [28], it makes

sense to consider special families of graphs for which the problem is

tractable. If the work of an algorithm can be written as O (𝑓 (𝑃)𝑁𝑐)
(for some function 𝑓 of the parameters 𝑃 and some polynomial 𝑁𝑐

of the input size 𝑁), the problem is fixed parameter tractable (FPT)
with respect to the parameters 𝑃 [27]. The clique problem is FPT

with respect to certain structural sparsity parameters of graphs.
As a classic example family of sparse graphs, planar graphs do

not contain cliques with more than 4 vertices, and all cliques in a

planar graph can be listed in linear time in the size of the graph [42].

Planar graphs are members of a more general class of sparse graphs

for which every subgraph has a low-degree vertex. This notion

of sparsity is called degeneracy. A closely related family of sparse

graphs is defined by being decomposable into a small number of

forests. The arboricity measures the number of such forests required

for a given graph. Many real-world graphs are sparse [5, 6, 9–11, 14]

and have a low degeneracy and arboricity [4, 7, 25, 49, 50].

In this work, we focus on improving the work and depth of FPT

algorithms to list all 𝑘-cliques in these sparse graphs, improving

both work and depth significantly as a function of the clique size 𝑘 .

Our approach utilizes the notion of edge communities - vertices with
whom an edge forms a triangle. We further introduce a notion of

relevant edges, that effectively upper bounds the community’s size.

This enables us to reject edges that cannot be a part of a 𝑘-clique,

pruning unnecessary recursive calls. We show that this pruning

criterion asymptotically reduces the work compared to previous

approaches.

1.1 Preliminaries
We consider a (directed or undirected) graph 𝐺 = (𝑉 , 𝐸) with 𝑛

vertices 𝑉 and𝑚 edges 𝐸. We will generally assume the graph is

connected and therefore𝑚 = Ω(𝑛). To orient a graph by a total
order, direct its edges from the endpoint lower in the total order

to the endpoint higher in the total order. A graph that has been

oriented by a total order is acyclic by construction. The subgraph

of a graph 𝐺 induced by a vertex set 𝑉 ′ is 𝐺 [𝑉 ′]. The neighbors of
a vertex 𝑢 in the graph 𝐺 are the set of all vertices in 𝑉 that are

connected to 𝑢 by edges in 𝐸. In a directed graph, the out-neighbors
are 𝑁 +

𝐺
(𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}, and the in-neighbors are

𝑁−
𝐺
(𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}. If the graph 𝐺 is clear from the

context, we write 𝑁 (𝑢), 𝑁 + (𝑢), and 𝑁− (𝑢) for short.
In an undirected graph, the community 𝐶𝐺 (𝑢, 𝑣) = 𝐶𝐺 (𝑒) of an

edge 𝑒 = {𝑢, 𝑣} is the intersection of the neighbors of its endpoints.

In a directed graph, the community 𝐶𝐺 (𝑢, 𝑣) = 𝐶𝐺 (𝑒) of an edge

𝑒 = (𝑢, 𝑣) is the intersection of the out-neighbors of 𝑢 and the in-
neighbors of 𝑣 . If the graph 𝐺 is clear from the context, we write

𝐶 (𝑢, 𝑣) and 𝐶 (𝑒) for short.

Sparse Graphs. A graph 𝐺 = (𝑉 , 𝐸) is 𝑠-degenerate, if in all in-

duced subgraphs 𝐻 of 𝐺 , there is a vertex with degree at most

𝑠 [37]. The degeneracy of a graph is the smallest 𝑠 such that the

graph is 𝑠-degenerate. Note that an 𝑠-degenerate graph can have

an unbounded maximum degree. For example, the star graph is

1-degenerate but has a maximum degree of 𝑛 − 1. An 𝑠-degenerate
graph can be oriented such that every vertex has at most 𝑠 out-

neighbors (greedily remove a vertex with the smallest degree in the

remaining subgraph). The order in which this greedy procedure

removes vertices is a degeneracy order.
A graph 𝐺 = (𝑉 , 𝐸) is 𝜎-community degenerate, if every (non-

edgeless) subgraph 𝐺 ′ has an edge 𝑒 with |𝐶𝐺′ (𝑒) | ≤ 𝜎 . The com-
munity degeneracy of a graph is the smallest value 𝜎 , such that the

graph is 𝜎-community degenerate [18]. The community degeneracy

is strictly smaller than the degeneracy: 𝜎 < 𝑠 and there are fami-

lies of graphs where the community degeneracy is asymptotically

smaller. For example, the 𝑑-dimensional hypercube has degeneracy

𝑠 = 𝑑 , but community degeneracy 𝜎 = 0. Moreover, the community

degeneracy can be 1 for graphs where the degeneracy is Θ(𝑛) and
there are Θ(𝑛) triangles. This is the case for a graph which has the

complete bipartite graph as a subgraph, with 𝑛/2 vertices in each

part, and additionally one part of the graph induces a line graph

on 𝑛/2 vertices. Buchanan et al. [18] also show empirically that the

community degeneracy is significantly smaller (27%-80%) than the

degeneracy for some real-world graphs (when the degeneracy is

significantly larger than the clique number).

The smallest number of forests into which a graph can be de-

composed (meaning that every edge is in exactly one of the forests)

is the arboricity 𝛼 of a graph. It is closely related to the degeneracy,

in particular 𝛼 ≤ 𝑠 < 2𝛼 [41].

𝑘-Cliques. An induced subgraph of 𝐺 that is a complete graph

with 𝑘-vertices is a 𝑘-clique. It follows from the definition that

an 𝑠-degenerate graph does not contain any (𝑠 + 2)-clique and a

graph with arboricity 𝛼 does not contain any (2𝛼 + 1)-clique (using
𝛼 > 𝑠/2). In this paper, we generally assume 𝑘 ≥ 4.

Deciding the size of a maximum clique is a classic NP-hard prob-

lem [31] and so is deciding if the graph has a 𝑘-clique. The problem

of finding a clique of size 𝑘 remains hard when parameterized by 𝑘 :

it is W[1]-hard [28]. However, the problem becomes FPT for graphs

when parameterized by degeneracy or arboricity [21].

Model of Computation. Our execution model is a shared-memory

parallel computerwith concurrent reads and exclusivewrites (CREW

PRAM) [44]. We express the performance of our algorithms in the

work/depth model. The work is the total number of elementary oper-

ations performed by all processors in any algorithm execution. The

depth is the length of a critical path. An algorithm with work𝑊

and depth 𝐷 can be scheduled on a CREW PRAMwith 𝑝 processors

so that it takes 𝑂 (𝑊 /𝑝 + 𝐷) time steps [15, 44].

1.2 Related Work
Chiba and Nishizeki [21] presented a result on 𝑘-clique listing

for low arboricity graphs. Their algorithm takes 𝑂 (𝑚𝛼𝑘−2) work.
Danish et al. [25] gave improved bounds in terms of the degeneracy.

Their algorithm does 𝑂 (𝑚(𝑠
2
)𝑘−2) work. Since 𝛼 ≤ 𝑠 < 2𝛼 , this is

never worse than Chiba and Nishizeki’s work bound, but can be

faster by a term exponential in 𝑘 for graphs where the degeneracy is

close to the arboricity. The algorithm has a depth of𝑂 (𝑛), stemming

from how the graph is directed with a degeneracy order. Recently,

Shi et al. [49] gave a variant on the algorithm that uses a fast parallel

approximation to the degeneracy order (in addition to providing

some improvements in the data structure used to represent the

graph during the recursive search). When 𝑘 is constant (which

they assume), this approximation does not impact the runtime.

However, the work increases by a factor exponential in 𝑘 because

of this approximation. These 𝑘-clique listing algorithms are not well

suited to finding very large cliques, as their bounds become super-
exponential in 𝑠 (and 𝛼) when the size of the cliques is 𝑘 = Ω(𝑠).
This is far from optimal, as a graph with degeneracy 𝑠 has at most

(𝑛 − 𝑠 + 1)2𝑠 cliques overall [55].
Previous 𝑘-clique listing algorithms [21, 25, 49] use a backtrack-

ing scheme combined with a clique-growing pattern, where a sub-

graph is expanded into larger and larger cliques, until a 𝑘-clique

is found or determined to be unreachable. A common optimiza-

tion [25, 49] is to orient the input graph. In 𝑘-clique counting, one

usually orients a graph with a total order on the vertices [25, 49].

A popular choice of order is the degeneracy-order as it assigns low

out degrees and can be computed in linear time [38]. Other works

on 𝑘-cliques focus on reordering heuristics [36], using GPUs [2].

Listing maximal cliques is also a subject of numerous works [16,

19, 20, 40, 47]. For example, Eppstein [29] presents a variant of

Bron-Kerbosch’s algorithm [17, 53] to findmaximal cliques. It takes

𝒗1 𝒗2

𝒗3

𝒗4𝒗5

𝒗6

Figure 1: To support a 𝑘-clique, an edge must have 𝑘 − 2 trian-
gles that contain it. In other words, its community must have
a size of 𝑘 − 2. In the example, the community of the edge
{𝑣1, 𝑣2} contains all the other vertices {𝑣3, 𝑣4, 𝑣5, 𝑣6}. Hence, it
could potentially support a 6-clique. Indeed, the edge {𝑣1, 𝑣2}
does support a 6-clique.

O
(
𝑠𝑛3𝑠/3

)
time, which is close to the (𝑛 − 𝑠)3𝑠/3 lower bound [29]

on the number of maximal cliques in an 𝑠-degenerate graph. A

maximum clique can be computed in O
(
2
0.276𝑛

)
time from the

relationship to maximum independent sets [45].

Many other variants of clique listing exist, such as diversified

top-𝑘 cliques [56], the 𝑘-clique densest subgraph problem [39, 54],

and densest subgraph discovery [30].

Converting a graph to a directed, acyclic graph gives an effective

way to assign cliques to certain vertices: A clique can e.g., be asso-

ciated with its topologically smallest or largest vertex. This way,

double counting can be avoided and the directions reduce the size

of the search space.

1.3 Our Contributions
We present an algorithm that provides, for the same depth, im-

proved work bounds for 𝑘-clique counting in 𝑠-degenerate graphs.

In particular, when 𝑘 = Ω(𝑠), the improvement grows exponentially

with 𝑘 . Considering the case where 𝑘 is not constant is important

because that is when the problem becomes hard. See Table 1 for a

comparison of our bounds compared to previous 𝑘-clique listing re-

sults in sparse graphs. Our algorithm differs in two relevant aspects

from previous approaches [21, 25, 49].

First, existing approaches use the degree of a vertex to decide

whether the neighborhood of a vertex can contain a smaller clique.

In contrast, our algorithm looks at edges and their triangles to grow
the clique: Each edge of a 𝑘-clique participates in (at least) 𝑘 − 2
triangles. See Figure 1 for an example. Our algorithm preprocesses

the graph such that each triangle (𝑎, 𝑏, 𝑐) is supported by exactly

one of its edges. If edge (𝑎, 𝑐) supports triangle (𝑎, 𝑏, 𝑐), we say that
vertex 𝑏 is in the community of edge (𝑎, 𝑐). To find a 𝑘-clique, we
only need to consider edges that support at least 𝑘 − 2 triangles. We

add this edge to the clique and recursively search for a (𝑘−2)-clique
in the subgraph induced by the community of that edge.

Second, we observe that we can use the number of vertices

ordered between the endpoints of an edge as a proxy for the number

of triangles it supports, as illustrated in Figure 2. This observation

allows us to exclude edges from the search space because they

cannot support a𝑘-clique, without actually looking at their triangles

in every step. Moreover, this simplification enables us to upper

𝒗1

𝒗2

𝒗3 𝒗4

𝒗5

𝒗6

Figure 2: If the graph is oriented by a total order, we can use
the number of vertices ordered between the endpoints of an
edge as a proxy to determine if it can support a 𝑘-clique. If
there are less than 𝑘 − 2 vertices ordered between the end-
points, the edge cannot support a 𝑘-clique. In the example,
only the edge (𝑣1, 𝑣6) could support a 6-clique using this prun-
ing rule. Therefore, we call the edge relevant. However, the
graph only contains two 5-cliques and no 6-clique because
there is no edge (𝑣3, 𝑣4).

bound our algorithm’s work, improving on the state-of-the-art for

𝑘-clique counting in 𝑠-degenerate graphs.

Pruning edges by excluding those which do not have enough

vertices ordered between their endpoints is what is responsible for

the Θ

((
1

1−𝑘/𝑠

)𝑘)
factor improvement in the work.

We also discuss different ways to orient and preprocess the graph.

These graph orientations leads to three variants with different

work/depth tradeoffs, as seen in Table 1.

Finally, we show clique counting results parameterized by the

community degeneracy. Our algorithm uses a total order on the
edges in addition to a total order on the vertices to get better re-

sults for graphs where 𝜎 < 𝑠 − 1. We again get three variants with

different work/depth tradeoffs. To achieve the sublinear-depth vari-

ants, we present a novel low-depth approximation algorithm for

the community degeneracy.

2 COMMUNITY-CENTRIC CLIQUE LISTING
We begin with an informal description of the ideas behind our

community-centric clique listing algorithm. Afterward, we state the

algorithm and bound its work and depth. Let us start with a simple

observation about 𝑘-cliques, on which we will gradually expand.

Any induced subgraph on a clique is a clique as well. A slight re-

formulation of this observation is the primary building block of

the algorithm by Chiba and Nishizeki [21], and subsequently, of

Danisch et al. [25] and Shi et al. [49]: If a vertex’s neighborhood

contains a (𝑘 − 1)-clique, then we have found a 𝑘-clique [21]. This

insight allows a simple backtracking formulation, where one re-

cursively searches for smaller cliques in the local neighborhood of

vertices. In the practical implementations [21, 25, 49], this formu-

lation gives rise to a form of candidate growing. In each recursive

call, the current candidate motif grows by one vertex to a larger

clique. During the backtracking, the candidate motif shrinks again.

Observe that one is not limited to grow a motif by a single vertex

in each step, but can extend the motif by any kind of clique in

its neighborhood, such as an edge (i.e., a 2-clique). Whereas each

Work Depth

Chiba/Nishizeki [21] O
(
𝑚𝛼𝑘−2

)
O

(
𝑚𝛼𝑘−2

)
Danish et al. [25] O

(
𝑘𝑚

(
𝑠
2

)𝑘−2) O
(
𝑛 + log2 𝑛

)
Shi et al. [49] O

(
𝑚 (𝑠 (1 + 𝜀))𝑘−2

)†
O

(
𝑘 log𝑛 + log2 𝑛

)★
Our Results for Degeneracy §2:

Best Work §4.1 O
(
𝑘𝑚

(
𝑠+3−𝑘

2

)𝑘−2)
O (𝑛 + 𝑘 log𝑛)

Hybrid §4.2 O
(
𝑘𝑛𝑠

(
𝑠+3−𝑘

2

)𝑘−2)
O

(
𝑠 + 𝑘 log𝑛 + log2 𝑛

)
Best Depth §4.1 O

(
𝑘𝑚

(
𝑠 (2+𝜀)+3−𝑘

2

)𝑘−2)
O

(
𝑘 log𝑛 + log2 𝑛

)
Our Results for Community Degeneracy §2:

Best Work §4.3 O
(
𝑚𝑠 + 𝑘𝑚

(
𝜎+4−𝑘

2

)𝑘−2)
O (𝑛 + 𝑘 log𝑛)

Hybrid §t4.3 O
(
𝑚𝑠 + 𝑘𝑛𝜎

(
𝜎+4−𝑘

2

)𝑘−2)
O

(
𝜎 + 𝑘 log𝑛 + log2 𝑛

)
Best Depth §4.3 O

(
𝑚𝑠 + 𝑘𝑚

(
(3+𝜀)𝜎+4−𝑘

2

)𝑘−2)
O

(
𝑘 log𝑛 + log2 𝑛

)
Table 1: Bounds for listing all 𝑘-cliques in a graph (𝑘 ≥ 4)
with degeneracy 𝑠, community degeneracy 𝜎 , and arboricity
𝛼 . The parameter 𝜀 is some positive real constant. Recall that
𝛼 ≤ 𝑠 < 2𝛼 and 𝑘 ≤ 𝜎 + 2 ≤ 𝑠 + 1. Bounds marked with †

hold in expectation and those marked with ★ hold with high
probability in 𝑛.

vertex has a fixed number of neighbors, each edge belongs to a

fixed number of triangles. In a 𝑘-clique, each edge participates in

𝑘 − 2 triangles. If the clique is oriented by a total order, we can

refine the statement. The supporting edge of a 𝑘-clique in a graph

oriented by a total order is the edge connecting the first and last

vertex in the total order. It holds that:

Observation 1. The supporting edge 𝑒 of a 𝑘-clique oriented by
a total order, has a community 𝐶 (𝑒) of size at least 𝑘 − 2. All other
edges have a smaller community.

In Section 2.2, we show the following bounds for our algorithm:

Theorem 2.1. Let 𝐺 = (𝑉 , 𝐸) be a directed acyclic graph oriented
by a total order, such that its largest community has size 𝛾 and its
largest out-degree is 𝑠 . Then, the work performed by Algorithm 1 is

O
(
𝑚(𝑠 + 𝛾2) + 𝑘𝑚

(
𝛾 + 4 − 𝑘

2

)𝑘−2)
,

and its depth is

O
(
log

2 𝑛 + 𝑘 log𝛾
)

.

In Section 4, we discuss different approaches to to orient a graph,

leading to the work/depth tradeoffs in Table 1.

2.1 Algorithm Construction
Algorithms 1 and 2 summarize our clique listing algorithm. Input to

Algorithm 1 are a graphDag oriented by a total order and an integer

𝑘 > 3. First, construct the edge communities and sort them (this

speeds up the later intersection operations). Second, loop over all

edges and recurse on their communities (line 3) with the recursive

clique counting Algorithm 2.

Algorithm 1 Listing all 𝑘-cliques in the oriented graph Dag

1: Build the communities and sort them

2: for all edges 𝑒 with at least 𝑘 − 2 triangles do in parallel
3: RecursiveCount(Dag,𝐶 (𝑒), 𝑘 − 2)
4: end for

The recursive procedure is shown in Algorithm 2. As input, it

takes a directed graph Dag, a set of candidate vertices 𝐼 and a

constant 𝑐 > 0, stating the number of vertices still required to

complete a 𝑘-clique. The recursion has two base cases: for 𝑐 = 1

(line 2), where each vertex in the candidate set completes the partial

motif to a 𝑘-clique and for 𝑐 = 2 (line 4), where each connected pair

of vertices completes the 𝑘-clique.

Given a set of vertices 𝐼 with a total order, the distance function
𝛿𝐼 : 𝐼 × 𝐼 ↦→ {0, . . . , |𝐼 − 2|} maps each pair of vertices (𝑢, 𝑣) to the

number of elements in 𝑉 that are ordered between 𝑢 and 𝑣 in the

total order. We keep the set 𝐼 in a sorted array. Then, for any two

candidates 𝑢 and 𝑣 , we compute 𝛿𝐼 (𝑢, 𝑣) from their indices in 𝐼 .

In the recursive case, iterate over all vertex pairs (𝑢, 𝑣), whose
distance 𝛿𝐼 (𝑢, 𝑣) to each other, given the total order and the candi-

date set 𝐼 , allows them to support a 𝑘-clique (line 6). For each such

pair, probe the existence of the corresponding edge (line 7) and, if

successful, intersect the candidate set with the community of the

edge (line 8) to create a new candidate set 𝐼 ′. Then, make the next

recursive call with the new candidate set 𝐼 ′, requiring 𝑐 − 2 vertices
to complete a 𝑘-clique (line 9).

See Figure 3 for an example of an execution of Algorithm 1.

Algorithm 2 Recursively search for cliques of size 𝑐 in Dag[𝐼].

1: if 𝑐 = 1 then
2: For every vertex 𝑣 in 𝐼 , return a clique.

3: else if 𝑐 = 2 then
4: For every edge (𝑢, 𝑣) in 𝐺 [𝐼], return a clique.

5: end if
6: for all pairs 𝑒 = (𝑢, 𝑣) ∈ 𝐼 × 𝐼 s.t. 𝛿𝐼 (𝑢, 𝑣) ≥ 𝑐 − 2 do
7: if 𝑒 is an edge in Dag then
8: 𝐼 ′ ← 𝐼 ∩𝐶 (𝑒)
9: RecursiveCount(Dag, 𝐼 ′, 𝑐 − 2)
10: end if
11: end for

2.2 Work/Depth Analysis
Let us first bound the cost of the preprocessing in Algorithm 1. We

can compute the triangles of a graph in𝑂 (𝑚𝑠) work and𝑂 (log2 𝑛)
depth [49], which gives us the communities. Sorting the communi-

ties takes O (𝑚𝛾 log𝛾) work and O (log𝛾) depth [22]. We build for

each edge 𝑒 an adjacencymatrix of𝐺 [𝐶 (𝑒)] and rename the vertices

to be consecutive integers. Next, for each edge 𝑒 ′ in such a subgraph
𝐺 [𝐶 (𝑒)], we build a boolean indicator table for the vertices in its

𝒗1

𝒗2

𝒗3 𝒗4

𝒗5

𝒗6

(a) Loop over all edges that can support a 4-clique, i.e., 4 triangles,
and call Algorithm 2. Only edge (𝑣1, 𝑣6) has a community of size at
least 4. For the call to Algorithm 2, 𝐼 = {𝑣2, 𝑣3, 𝑣4, 𝑣5 } and 𝑐 = 4.

𝒗1

𝒗2

𝒗3 𝒗4

𝒗5

𝒗6

(b) Iterate over all pairs in the candidate set with a distance of 2 that
form an edge. Only the edge (𝑣2, 𝑣5) has a distance of 2.

𝒗1

𝒗2

𝒗3 𝒗4

𝒗5

𝒗6

(c) Among the remaining candidates, there is only one pair: (𝑣3, 𝑣4) .
The edge between the pair does not exist. Hence algorithm 2 aborts
and reports that there is no 6-clique.

Figure 3: Example of using Algorithm 1 to search (in vain)
for a 6-clique in the above graph. Black vertices belong to the
candidate set for the next call to Algorithm 2, red vertices
and edges are being considered for extending the clique, and
grey vertices and edges have been already visited.

𝒗1

𝒗2

𝒗3 𝒗4

𝒗5

𝒗6

Figure 4: In the example graph, the edges relevant with re-
spect to 3 are R𝐸

3
(𝐺) = {(𝑣1, 𝑣5), (𝑣1, 𝑣6)} (marked red). These

are the edges that could potentially support a 5-clique. The
pairs R𝑃

3
(𝐺) relevant with respect to 3 also include (𝑣2, 𝑣6).

“local” community 𝐶𝐺 [𝐶 (𝑒)] (𝑒 ′). This preprocessing speeds up the

intersections and edge probing. It costs O
(
𝑚𝛾2

)
work.

Before we bound the work and depth of the recursive Algo-

rithm 2, we need some additional notation. Given a set of vertices

𝑉 , a pair (𝑢, 𝑣) of vertices is relevant with respect to 𝑐 ∈ N0, if
and only if 𝛿𝑉 (𝑢, 𝑣) ≥ 𝑐 , meaning that there are at least 𝑐 vertices

ordered between 𝑢 and 𝑣 . The set of relevant pairs of𝑉 with respect

to 𝑐 and the total order of𝑉 is R𝑃𝑐 (𝑉). An edge 𝑒 = (𝑢, 𝑣) is relevant
with respect to 𝑐 , if it forms a relevant pair with respect to 𝑐 . Note

that an edge that is not relevant with respect to 𝑘−2 cannot support
a 𝑘-clique and that Algorithm 2 only recurses on the relevant edges

(with respect to 𝑐 − 2). The set of relevant edges with respect to 𝑐

in the graph 𝐺 = (𝑉 , 𝐸) is R𝐸𝑐 (𝐺). See Figure 4 for an illustration

of the relevant pairs and edges.

Next, let us bound the work and depth of Algorithm 2. For each

relevant edge 𝑒 , computing the intersection of 𝐼 with 𝐶 (𝑒) takes
O (log𝛾) depth and O (|𝐶 (𝑒) | + |𝐼 |) work: For each element in 𝐼

use the indicator table for 𝐶 (𝑒) to test if it is in 𝐶 (𝑒). Perform a

parallel prefix sum [44] to gather the elements in the intersection.

The work for edge probing is O
(
R𝑃
𝑐−2 (𝐼)

)
and the depth is O (1).

At the base cases, the work is O (𝑘) per listed clique, and the depth

is O (1).
The recursion in Algorithm 2 has depth ⌊ 𝑘−2

2
⌋. Hence, the crit-

ical path has length O (log𝑛 + 𝑘 + 𝑘 log(𝛾 + 1)). As long as 𝛾 ≠ 0,

the additive 𝑘 term is negligible. Next, we express the work of

Algorithm 2 recursively.

Let𝑊 (𝑐, 𝐼) be the work of Algorithm 2 for candidate set 𝐼 and

parameter 𝑐 . We express the work recursively as follows:

𝑊 (1, 𝐼) ≤ O (𝑘 |𝐼 |)

𝑊 (2, 𝐼) ≤ O
(
|R𝑃

0
(𝐼) | + 𝑘 |R𝐸

0
(𝐺 [𝐼]) |

)
𝑊 (𝑐, 𝐼) ≤ O

©­­« |R𝑃𝑐−2 (𝐼) | +
∑︁

𝑒∈R𝐸
𝑐−2 (𝐺 [𝐼])

|𝐶 (𝑒) | + |𝐼 | +𝑊 (𝑐 − 2, 𝐼 ∩𝐶 (𝑒))
ª®®¬

By telescoping this formula, we can see that the key to tackling this

recursion is a bound on the following sum:∑︁
𝑒∈R𝐸

𝑐 (𝐺)
|R𝐸𝑐−2 (𝐺 [𝐶 (𝑒)]) | .

The sum corresponds to the loop in the algorithm that iterates

over the relevant edges. For each edge 𝑒 , the term |R𝐸
𝑐−2 (𝐺 [𝐶 (𝑒)]) |

is a bound on the number of relevant edges in the subgraph that

the algorithm recurses on. In Section 3, we establish the following

bounds on this quantity.

Lemma 2.2. For a graph𝐺 = (𝑉 , 𝐸) oriented by a total order and
any 𝑐 ≥ 2, we have that:∑︁

𝑒∈R𝐸
𝑐 (𝐺)
|R𝐸𝑐−2 (𝐺 [𝐶 (𝑒)]) | ≤

∑︁
𝑒∈R𝐸

𝑐 (𝐺)
|R𝑃𝑐−2 (𝐶 (𝑒)) |

≤
(𝑛 − 𝑐

2

)
2

|R𝐸𝑐 (𝐺) |.

We focus on bounding the total cost incurred for listing the

cliques at the leaves of the recursion for 𝑐 ≥ 2. The proofs bounding

the remaining cost (associated with the computation of intersec-

tions and edge testing) are similar and can be found in Appendix A.1.

Observation 2. The number of non-trivial recursive calls of Al-
gorithm 2 (i.e., excluding the base case 𝑐 = 1) is given by the function
𝑟 (𝑐) =

⌊
𝑐
2

⌋
. Moreover, note that 𝑟 (𝑐) + 1 = 𝑟 (𝑐 + 2).

For some constant 𝑎, we define the following function to help

unifying the analysis when 𝑐 is even or odd:

𝑏 (𝑐, 𝑖) ≤
{
𝑎 · 𝑘 if 𝑐 is even

𝑎 · 𝑘 · 𝑖 else.

The constant 𝑎 is chosen such that the work to list a 𝑘-clique is at

most 𝑎𝑘 and the cost of listing 𝑖 = |𝐼 | 𝑘-cliques is at most 𝑎 · 𝑘 · 𝑖 .

Lemma 2.3. Let 𝐿(𝑐, 𝐼) be the work of the algorithm incurred at the
leaves of the recursion in Algorithm 2. Then, we have for any 𝑐 ≥ 2,

𝐿(𝑐, 𝐼) ≤
(
|𝐼 | − 𝑐 + 2

2

)
2𝑟 (𝑐−2)

|R𝐸𝑐−2 (𝐺 [𝐼]) | 𝑏 (𝑐, |𝐼 | − 2𝑟 (𝑐)) .

Proof. The proof is by induction on 𝑐 . The base cases 𝑐 = 2

and 𝑐 = 3 are quickly verified. Assume now, that the inequality on

𝐿(𝑐 ′, 𝐼) holds for all 𝑐 ′ ≤ 𝑐 . We show that it also holds for 𝑐 + 2.

𝐿(𝑐, 𝐼)

≤
∑︁

𝑒∈R𝐸
𝑐−2 (𝐺 [𝐼])

𝐿(𝑐 − 2, 𝐼 ∩𝐶 (𝑒))

≤
∑︁

𝑒∈R𝐸
𝑐−4 (𝐺 [𝐼])

(
|𝐼 ∩𝐶 (𝑒) | − 𝑐 + 4

2

)
2𝑟 (𝑐−4)

|R𝐸𝑐−4 (𝐺 [𝐼 ∩𝐶 (𝑒)]) |

· 𝑏 (𝑐 − 2, |𝐼 ∩𝐶 (𝑒) | − 2𝑟 (𝑐 − 2))

≤
∑︁

𝑒∈R𝐸
𝑐−2 (𝐺 [𝐼])

(
|𝐼 | − 𝑐 + 2

2

)
2𝑟 (𝑐−4)

|R𝐸𝑐−4 (𝐺 [𝐼 ∩𝐶 (𝑒)]) |

· 𝑏 (𝑐 − 2, |𝐼 | − 2 − 2𝑟 (𝑐 − 2)) .

Now, we apply Lemma 2.2 (on the subgraph 𝐺 [𝐼]):

≤
(
|𝐼 | − 𝑐 + 2

2

)
2𝑟 (𝑐−4)+2

|R𝐸𝑐−2 (𝐺 [𝐼]) | 𝑏 (𝑐 − 2, |𝐼 | − 2 − 2𝑟 (𝑐 − 2))

Now, we use Observation 2 for both occurrences of the function 𝑟 .

Furthermore, since 𝑐 and 𝑐 − 2 are either both odd or both even, we

can replace the 𝑐 − 2 in the call to 𝑏 with 𝑐:

𝐿(𝑐, 𝐼) ≤
(
|𝐼 | − 𝑐 + 2

2

)
2𝑟 (𝑐−2)

|R𝐸𝑐−2 (𝐺 [𝐼]) | 𝑏 (𝑐, |𝐼 | − 2𝑟 (𝑐)),

which is of the desired form and concludes the proof. □

See Appendix A.2 for a proof of the overall work incurred by

Algorithm 1, finishing the proof of Theorem 2.1.

3 COMBINATORICS
In this section, we prove Lemma 2.3, which is the key ingredient

in the work proof. We begin by introducing the notation that we

need for the proof. See also Figure 5 and Figure 6 for an illustration

of the relevant concepts.

3.1 Additional Notation
A vertex 𝑢 ∈ 𝑉 is a relevant out-vertex with respect to 𝑐 , if there

exists a vertex 𝑣 ∈ 𝑉 , such that (𝑢, 𝑣) forms a relevant pair with

respect to 𝑐 . The set of relevant out-vertices with respect to 𝑐 and

the total order in 𝑉 is denoted P+𝑐 (𝑉). Similarly, a vertex 𝑣 ∈ 𝑉 is a

relevant in-vertex with respect to 𝑐 , if there exists a vertex 𝑢 ∈ 𝑉 ,
such that (𝑢, 𝑣) forms a relevant pair with respect to 𝑐 . The set of

𝒗1 𝒗2 𝒗3 𝒗4 𝒗5 𝒗6

Figure 5: Ordered between the pairs (𝑣1, 𝑣5), (𝑣1, 𝑣6) and (𝑣2, 𝑣6)
are at least 3 other vertices. Hence, they are all relevant pairs
with respect to 3. That is, they constitute the set R𝑃

3
(𝐺). Each

of the relevant pairs starts with one of the vertices in P+
3
(𝑉) =

{𝑣1, 𝑣2} (marked orange) and ends with one of the vertices in
P−
3
(𝑉) = {𝑣5, 𝑣6} (marked blue).

𝒗1

𝒗2

𝒗3 𝒗4

𝒗5

𝒗6

Figure 6: In the example graph R𝐸
3
(𝐺) = {(𝑣1, 𝑣5), (𝑣1, 𝑣6)}.

Hence, the relevant out-vertices with respect to 3 are E+
3
(𝐺) =

{𝑣1} (marked orange). Each such vertex is the head of an edge
that has distance 3. The vertices E−

3
(𝐺, 𝑣1) = {𝑣5, 𝑣6} are the

tails of those edges (marked blue).

relevant in-vertices with respect to 𝑐 and the total order in 𝑉 is

denoted P−𝑐 (𝑉). See Figure 5 for an example.

E+𝑐 (𝐺) are all relevant out-vertices with respect to 𝑐 , that are

part of a relevant edge, not only a relevant pair. Similarly, E−𝑐 (𝐺,𝑢)
are all relevant in-vertices with respect to 𝑐 , that form a relevant

edge together with 𝑢, see Figure 6. Formally, we have:

E+𝑐 (𝐺) = {𝑢 | ∃𝑤 : (𝑢,𝑤) ∈ R𝐸𝑐 (𝐺)} ,

E−𝑐 (𝐺,𝑢) = {𝑣 | (𝑢, 𝑣) ∈ R𝐸𝑐 (𝐺)} .

For a set 𝑆 and a predicate 𝑃 , we write 𝑆 [𝑃] to select the subset

of 𝑆 that satisfies the predicate 𝑃 , e.g., 𝑉 [< 𝑢] contains all vertices
in 𝑉 smaller than 𝑢 in the order <.

3.2 Bounds on Relevant Edges and Pairs
Let us begin with two simple observations on relevant pairs:

Observation 3. In a set of vertices𝑉 with a total order, the number
of relevant out- and in-vertices with respect to 𝑐 ∈ N0 is:

|P+𝑐 (𝑉) | = |P−𝑐 (𝑉) | = |𝑉 | − (𝑐 + 1) .

Proof. The last (respectively first) (𝑐 + 1) vertices in 𝑉 cannot

be relevant with respect to 𝑐 . □

Observation 4. In a set of vertices𝑉 with a total order, the number
of relevant pairs in 𝑉 with respect to 𝑐 ∈ N0 is:

|R𝑃𝑐 (𝑉) | = |P+𝑐 (𝑉) |
|𝑉 | − 𝑐

2

= |P−𝑐 (𝑉) |
|𝑉 | − 𝑐

2

=

(
|𝑉 | − 𝑐

2

)
.

Proof. The first relevant out-vertex forms relevant pairs with

exactly |𝑉 | − (𝑐 + 1) other vertices. The second out-vertex with

|𝑉 | − (𝑐 + 2) vertices, and so on, until the very last relevant out-

vertex only participates in one relevant pair. The count of relevant

pairs is thus a sum over a descending sequence from |𝑉 | − (𝑐 + 1)
down to 1. Since there are |P+𝑐 (𝑉) | = |𝑉 | − (𝑐 + 1) terms, the sum

can be computed with Gauss’ sum formula. A symmetric argument

relates the relevant in-vertices to the relevant pairs. □

We continuewith a simpler (weaker) Lemma related to Lemma 2.2:

Lemma 3.1. For a graph𝐺 = (𝑉 , 𝐸) oriented by a total order where
the largest community has size 𝛾 and any 𝑐 ≥ 2, we have that:∑︁

𝑒∈R𝐸
𝑐 (𝐺)
|R𝐸𝑐−2 (𝐺 [𝑁 (𝑒)]) | ≤

(
𝛾 − 𝑐 + 2

2

)
|R𝐸𝑐 (𝐺) | .

Proof. Every relevant edge is also a relevant pair, so we bound

the number of relevant pairs |R𝑃
𝑐−2 (𝐶 (𝑒)) | for each edge 𝑒 . For any

edge 𝑒 ∈ 𝐸, by Observation 4 and |𝐶 (𝑒) | ≤ 𝛾 ,

|R𝐸𝑐−2 (𝐶 (𝑒)) | ≤ |R
𝑃
𝑐−2 (𝐶 (𝑒)) | =

(
|𝐶 (𝑒) | − (𝑐 − 2)

2

)
.

□

When applied to a graph with at most 𝛾 + 2 vertices, Lemma 2.3

provides a factor 2 better bound than Lemma 3.1. This factor is

crucial for the work bound as it will be amplified exponentially

with 𝑘 by the recursion. Now, let us turn to the proof of our main

result on counting relevant edges.

Proof Of Lemma 2.2. For each term of the sum, we rewrite

|R𝑃
𝑐−2 (𝐶 (𝑒)) | using Observation 4. Note that |𝐶 (𝑒) | ≤ 𝑛 − 2 to

upper bound the term:∑︁
𝑒∈R𝐸

𝑐 (𝐺)
|R𝑃𝑐−2 (𝐶 (𝑒)) | (1)

≤ 𝑛 − 𝑐
2

∑︁
𝑒∈R𝐸

𝑐 (𝐺)
|P+𝑐−2 (𝐶 (𝑒)) |, (2)

≤ 𝑛 − 𝑐
2

∑︁
𝑢∈E+𝑐 (𝐺)

∑︁
𝑣∈E−𝑐 (𝐺,𝑢)

|P+𝑐−2 (𝐶 (𝑢, 𝑣)) |. (3)

Now, we relate the set of relevant in-vertices that are part of a

relevant edge to a set of vertices that are part of a relevant pair:

E−𝑐 (𝐺,𝑢) ⊇ P−𝑐
(
{𝑢} ∪ 𝑁 +𝐺 (𝑢)

)
= P−𝑐−1

(
𝑁 +𝐺 (𝑢)

)
(4)

Moreover, for every vertex 𝑣 that is in E−𝑐 (𝐺,𝑢) and is not in

P−𝑐
(
{𝑢} ∪ 𝑁 + (𝑢)

)
, the set R𝑃

𝑐−2 (𝐶 (𝑢, 𝑣)) is empty: Consider a ver-

tex inE−𝑐 (𝐺,𝑢) that is not in P−𝑐
(
{𝑢} ∪ 𝑁 +

𝐺
(𝑢)

)
. Then, there are less

than 𝑐 vertices ordered between𝑢 and 𝑣 that are inside𝑁 +
𝐺
(𝑢) (using

that𝑢 is smaller than its out-neighbors). Hence, the set 𝑁 +
𝐺
(𝑢) [< 𝑣]

has size less than 𝑐 . If the set R𝑃
𝑐−2 (𝐶 (𝑢, 𝑣)) is not empty, then there

is a pair (𝑢 ′, 𝑣 ′) in it with distance 𝛿𝐶 (𝑢,𝑣) (𝑢 ′, 𝑣 ′) ≥ 𝑐 − 2. But this
implies the set𝐶 (𝑢, 𝑣) has size at least 𝑐 . Because𝐶 (𝑢, 𝑣) is a subset
of 𝑁 +

𝐺
(𝑢) [< 𝑣] (all vertices in 𝑁− (𝑣) come before 𝑣 in the total

order) this contradicts the fact that 𝑁 +
𝐺
(𝑢) [< 𝑣] has size less than

𝑐 .

This means that the terms in the inner sum corresponding to

vertices 𝑣 that are in E−𝑐 (𝐺,𝑢) but not in P−𝑐
(
{𝑢} ∪ 𝑁 + (𝑢)

)
can be

dropped without changing the sum. Applying this observation and

𝐶 (𝑢, 𝑣) ⊆ 𝑁 + (𝑢) [< 𝑣], we continue:
𝑛 − 𝑐
2

∑︁
𝑢∈E+𝑐 (𝐺)

∑︁
𝑣∈E−𝑐 (𝐺,𝑢)

|P+𝑐−2 (𝐶 (𝑢, 𝑣)) | (5)

=
𝑛 − 𝑐
2

∑︁
𝑢∈E+𝑐 (𝐺)

∑︁
𝑣∈P−

𝑐−1 (𝑁 + (𝑢))
|P+𝑐−2 (𝐶 (𝑢, 𝑣)) | (6)

≤ 𝑛 − 𝑐
2

∑︁
𝑢∈E+𝑐 (𝐺)

∑︁
𝑣∈P−

𝑐−1 (𝑁 + (𝑢))
|P+𝑐−2

(
𝑁 + (𝑢) [< 𝑣]

)
| (7)

Continue using P+
𝑐−2

(
𝑁 + (𝑢) [< 𝑣]

)
= P+

𝑐−1
(
𝑁 + (𝑢) [≤ 𝑣]

)
:

=
𝑛 − 𝑐
2

∑︁
𝑢∈E+𝑐 (𝐺)

∑︁
𝑣∈P−

𝑐−1 (𝑁 + (𝑢))
|P+𝑐−1

(
𝑁 + (𝑢) [≤ 𝑣]

)
| . (8)

Above, the inner sum now counts all pairs in 𝑁 + (𝑢), that are rele-
vant with respect to 𝑐 − 1. We rewrite the sum using Observation 4

applied to the subgraph of𝐺 induced by 𝑁 + (𝑢) (which has at most

𝑛 − 1 vertices):

≤ 𝑛 − 𝑐
2

∑︁
𝑢∈E+𝑐 (𝐺)

|P−𝑐−1
(
𝑁 + (𝑢)

)
|𝑛 − 1 − (𝑐 − 1)

2

(9)

≤
(𝑛 − 𝑐

2

)
2 ∑︁
𝑢∈E+𝑐 (𝐺)

|E−𝑐 (𝐺,𝑢) |, (10)

≤
(𝑛 − 𝑐

2

)
2

|R𝐸𝑐 (𝐺) |. (11)

In the second step, we upper bounded |P−
𝑐−1

(
𝑁 + (𝑢)

)
| using Equa-

tion (4). The sum now counts again over the edges, relevant with

respect to 𝑐 , which concludes the proof. □

4 GRAPH ORIENTATION
Our clique listing algorithm requires a vertex ordering such that

when we orient the graph, its communities have a small size 𝛾 . We

explore three different approaches. The first two approaches rely on

existing results on degeneracy orders. The third hybrid approach

uses a different outer loop to achieve a better work/depth tradeoff

for large cliques 𝑘 .

We also present how to get algorithms with bounds that are

parametric in the community degeneracy. These algorithms require

an order on the edges that reduces the size of the subgraphs used in

the recursive calls over the edges’ communities.

4.1 Computing a Degeneracy Order
We can use previous results on degeneracy order to compute such

an order, with different work/depth tradeoffs. A greedy algorithm

computes the degeneracy order in linear time, but has linear depth.

Lemma 4.1. Computing a degeneracy order takes 𝑂 (𝑚) work and
𝑂 (𝑛) depth [38].

Although no low depth algorithm is known to compute the

degeneracy order, it can be approximated effectively in parallel. A

total order on the vertices such that the graph oriented by it has

maximum out-degree 𝛽𝑠 is a 𝛽-approximate degeneracy order.

Lemma 4.2 (Besta et al.[3], Shi et al. [49]). Computing a (2+𝜀)-
approximate degeneracy order takes𝑂 (𝑚) work and𝑂 (log𝑛 log

1+𝜀 𝑛)
depth.

Note that the size of the largest community is at most the maxi-

mum out-degree minus 1. Hence, using these vertex orders to orient

the graph, we obtain two of the results in Table 1 from Theorem 2.1,

namely the best work and the best depth results for degeneracy.

4.2 The Hybrid Approach
While computing the exact degeneracy order provides the best

work-bound in terms of𝑚,𝑘 , and 𝑠 , its depth is linear in 𝑛. Using an

approximate degeneracy order yields a clique counting algorithm

that is work-inefficient by a term that is exponential in 𝑘 . This inef-

ficiency persists even for very small 𝜀 because the approximation

leads to a factor 2 + 𝜀 larger maximum out-degree in the worst case.

Hence the factor Θ((2 + 𝜀)𝑘) work-inefficiency arises.

Therefore, we present a hybrid approach that is only work-

inefficient by a factor
𝑛𝑠
𝑚 ≤ 𝑠 and has a depth that reduces the

term linear in 𝑛 to linear in 𝑠 . The idea is that an approximate

degeneracy order already guarantees that the subgraphs induced

by the out-vertices have 𝑂 (𝑠) vertices. It then remains to solve

these subgraphs with the clique listing algorithm that uses an exact

degeneracy order. The algorithm goes as follows:

Compute a (2.5)-approximate degeneracy order in parallel and

orient the graph according to it. Then, for each vertex 𝑣 , orient

the graph 𝐺 [𝑁 + (𝑣)] using an (exact) degeneracy order, then run

Algorithm 2 on 𝐺 [𝑁 + (𝑣)].

This hybrid approach has O
(
𝑘𝑛𝑠

(
𝑠+3−𝑘

2

)𝑘−2)
work and depth

O
(
𝑠 + 𝑘 log 𝑠 + log2 𝑛

)
. For each vertex 𝑣 , the induced subgraph

𝐺 [𝑁 + (𝑣)] has 𝑂 (𝑠 |𝑁 + (𝑣) |) edges and 𝑂 (𝑠) vertices. The cost of

building these subgraphs and their communities is O
(
𝑠𝑁 + (𝑣)

)
per

vertex 𝑣 and O (𝑚𝑠) overall. For 𝑘 ≥ 4, the preprocessing cost does

not dominate. Finally, apply the bounds from Theorem 2.1 on each

subgraph for 𝛾 = 𝑠 − 1.

4.3 Parameterizing by Community Degeneracy
Next, we present a preprocessing approach that uses a total order of

the edges in addition to an order on the vertices. This preprocessing

naturally leads to algorithms whose runtime is parameterized by

the community degeneracy of the graph.

To reduce the runtime for the recursive clique listing algorithm,

we want to reduce the size of the subgraphs induced by the com-

munities of an edge. We observe that it suffices to recurse only on

a subset of the community, namely we can introduce an order on

the edges of the graph. Then, we only consider the community of

an edge 𝑒 in the subgraph induced by edges ordered higher than 𝑒 .

In other words, these are the endpoints of the triangles supported

by edges whose other edges come after the supporting edge. The

approach is summarized in Algorithm 3 and goes as follows:

In addition to computing a total order on the vertices, first, com-

pute a total order ⪯ on the edges. Then, traverse the edges in this

order and for each edge 𝑒 = (𝑢, 𝑣) construct the candidate set

𝐶 (𝑉 ,𝐸 [𝑒⪯]) (𝑒), that is, the community of the edge 𝑒 in the subgraph

of 𝐺 consisting of the edges ordered after 𝑒 in the total order. For

each candidate set, run the recursive clique counting Algorithm 2

with parameter 𝑐 = 𝑘 − 2.
To reduce the work of this algorithm, the chosen edge order is

crucial. We minimize the maximum size of the candidate sets with

a greedy algorithm: repeatedly choose and remove an edge that

support the smallest number of triangles in the remaining subgraph.

By definition of the community degeneracy 𝜎 , the largest subgraph

constructed in this way has 𝜎 vertices. Note that the order of the

vertices used for the recursive clique listing does not influence the

runtime and can be arbitrary (say by vertex id).

Algorithm 3 Listing all 𝑘-cliques in graph 𝐺

1: Dag← orient 𝐺 by a total vertex order

2: Compute a total order ⪯ of the edges of 𝐺

3: for all edges 𝑒 = {𝑢, 𝑣} do in parallel
4: 𝑉 ′ ← 𝐶 (𝑉 ,𝐸 [𝑒⪯]) (𝑒)
5: RecursiveCount(Dag,𝑉 ′, 𝑘 − 2)
6: end for

Observe that the set of candidates 𝑉 ′ constructed for edge 𝑒 is a

subset of the community 𝐶𝐺 (𝑒) of 𝑒 in the input graph. Moreover,

each 𝑘-clique is contained in at least one of the constructed sub-

graphs, namely the one which corresponds to the edge in the clique

lowest in the community degeneracy order. The total order on the

vertices ensures that each clique is reported exactly once.

Theorem 4.3. Let 𝛾 be the largest size of the set 𝑉 ′ takes in Al-
gorithm 3. Then, the cost of Algorithm 3, excluding the cost of pre-

processing, is O
(
𝑘𝑚

(
𝛾+4−𝑘

2

)𝑘−2)
work and 𝑂 (𝑘 log(𝛾 + 1)) depth

to list all 𝑘-cliques.

The analysis is basically the same as in Appendix A.2, except

that we have a better bound for the induced subgraphs given by

the maximum size of |𝑉 ′ | = 𝛾 .

We again propose three different variants on implementing the

preprocessing in Algorithm 3. The simplest way is the greedy ap-

proach outlined above, which leads to the best work.

The problem with this approach is that it has linear depth in

𝑛 to compute the edge order. Instead of computing the order of

the edges greedily, we can compute an approximation of the order,

summarized in Algorithm 4 and described in the following:

Compute the triangles 𝑇 in 𝐺 . For each edge, keep track of the

triangles that contain it (and vice versa). Moreover, for each edge

𝑒 , keep a count of the remaining number of triangles |𝐶 (𝑒) | that
contain 𝑒 . Then, repeat the following until the graph has no edges

left: Select all the edges with |𝐶 (𝑒) | ≤ (3 + 𝜀)𝑇 /𝑚 triangles. The

constant 𝜀 must be positive. Remove those edges from the graph

and add them to the total order, breaking ties arbitrarily. For each

triangle that contained an edge in the removed set of edges, its

edges 𝑒 need to update their count |𝐶 (𝑒) |. Then, update the overall
count of remaining triangles 𝑇 .

Next, we make a few observations to help us bounding the work,

depth, and quality of the approximate community degeneracy order.

Observation 5. A graph with community degeneracy 𝜎 has at
most 𝜎𝑚 triangles.

Proof. Remove the edges of the graph in a greedy manner,

picking the edge with the smallest remaining number of triangles

that contain it next. By definition of the community degeneracy,

each subgraph encountered this way has an edge with 𝜎 triangles

Algorithm 4 Computing a (3 + 𝜀)-approximate community degen-

eracy order of the graph 𝐺

1: Compute the triangles 𝑇 in 𝐺 and link them with their edges.

2: Count for each edge the triangles |𝐶 (𝑒) | that contain it.

3: while 𝐸 ≠ ∅ do
4: 𝐸 ′ ← the edges with at most |𝐶 (𝑒) | ≤ (3 + 𝜀)𝑇 /𝑚 triangles.

5: Add the edges in 𝐸 ′ to the total order, break ties arbitrarily.

6: Remove 𝐸 ′ from the graph

7: Update each 𝐶 (𝑒) to reflect the removal of 𝐸 ′.
8: Update the number of triangles 𝑇 .

9: end while

that contain it. The process terminates after𝑚 steps. Hence, the

process removes at most𝑚𝜎 triangles until no triangle is left. □

Observation 6. Algorithm 4 terminates after O
(
log

1+𝜀𝑚
)
itera-

tions

Proof. From Observation 5, it follows that the average number

of triangles per edge is at most 3𝜎𝑇 /𝑚 in each iteration (each trian-

gle is counted once for each of its edges). From any set of numbers,

at most a
1

1+𝜀 fraction of numbers are larger than (1 + 𝜀) times the

average. Hence, each iteration reduces the number of edges by a

factor at least (1 + 𝜀). □

Lemma 4.4. Algorithm 4 computes an order ⪯ on the edges such
that for each edge 𝑒 , the set 𝐶 (𝑉 ,𝐸 [𝑒⪯]) (𝑒) has size at most (3 + 𝜀)𝜎 .
It takes O (𝑚𝑠 +𝑚𝜎) work and O

(
log𝑛 log

1+𝜀 𝑛
)
depth.

Proof. Listing the triangles takes O (𝑚𝑠) work and O
(
log

2 𝑛

)
depth [21]. Each iteration of the loop takes work proportional to the

number of removed edges and O (log𝑛) depth. By Observation 6,

the algorithm terminates after O
(
log

1+𝜀 𝑛
)
iterations.

For the bound on the size of the communities, note that by

Observation 5, 𝑇 /𝑚 ≤ 𝜎 . Hence, each of the removed edges satisfy

|𝐶 (𝑒) | ≤ (3 + 𝜀)𝑇 /𝑚 ≤ (3 + 𝜀)𝜎 . □

The results for the community degeneracy in Table 1 follow from

Theorem 4.3 by using either the sequential greedy preprocessing,

Lemma 4.4, or by using a hybrid approach similar to Section 4.2.

5 CONCLUSION AND FUTUREWORK
We presented work improvements over previous algorithms on 𝑘-

clique listing in 𝑠-degenerate and 𝜎-community-degenerate graphs.

The improvements are exponential in the clique size 𝑘 , in particular

when 𝑘 = Θ(𝑠).
Many interesting open questions remain. There remains a gap

of O (𝑛𝑠/𝑚) between the work of our best poly-logarithmic depth

algorithm and our lowest work algorithm. Can we do better? More-

over, it would be interesting if the work can be further reduced

when 𝑘 is not constant. It might be interesting to consider general-

izations that extend the cliques by larger motifs such as triangles.

Finally, are there other interesting classes of graphs where the

clique problem is tractable?

REFERENCES
[1] Charu C Aggarwal, Haixun Wang, et al. Managing and mining graph data,

volume 40. Springer, 2010.

[2] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jinjun Xiong, and Wen-mei

Hwu. K-clique counting on gpus. arXiv preprint arXiv:2104.13209, 2021.
[3] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi, and T. Hoe-

fler. High-performance parallel graph coloring with strong guarantees on work,

depth and quality. In 2020 SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1401–1417, Los Alami-

tos, CA, USA, nov 2020. IEEE Computer Society.

[4] Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas

Gianinazzi, and Torsten Hoefler. High-performance parallel graph coloring with

strong guarantees on work, depth, and quality. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–17.
IEEE, 2020.

[5] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten

Hoefler. Practice of streaming processing of dynamic graphs: Concepts, models,

and systems. arXiv preprint arXiv:1912.12740, 2019.
[6] Maciej Besta and Torsten Hoefler. Accelerating irregular computations with

hardware transactional memory and active messages. In Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed Computing,
pages 161–172, 2015.

[7] Maciej Besta and Torsten Hoefler. Survey and taxonomy of lossless

graph compression and space-efficient graph representations. arXiv preprint
arXiv:1806.01799, 2018.

[8] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata

Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda,

Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, et al. Sisa: Set-centric

instruction set architecture for graph mining on processing-in-memory systems.

arXiv preprint arXiv:2104.07582, 2021.
[9] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michał Pod-

stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying

graph databases: Analysis and taxonomy of data organization, system designs,

and graph queries. arXiv preprint arXiv:1910.09017, 2019.
[10] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten

Hoefler. To push or to pull: On reducing communication and synchronization

in graph computations. In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing, pages 93–104, 2017.

[11] Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold,

and Torsten Hoefler. Log (graph) a near-optimal high-performance graph repre-

sentation. In Proceedings of the 27th International Conference on Parallel Architec-
tures and Compilation Techniques, pages 1–13, 2018.

[12] Maciej Besta, Zur Vonarburg-Shmaria, Yannick Schaffner, Leonardo Schwarz,

Grzegorz Kwasniewski, Lukas Gianinazzi, Jakub Beranek, Kacper Janda, To-

bias Holenstein, Sebastian Leisinger, et al. Graphminesuite: Enabling high-

performance and programmable graphmining algorithmswith set algebra. VLDB,
2021.

[13] Maciej Besta, Zur Vonarburg-Shmaria, Yannick Schaffner, Leonardo Schwarz,

Grzegorz Kwasniewski, Lukas Gianinazzi, Jakub Beranek, Kacper Janda, Tobias

Holenstein, Sebastian Leisinger, Peter Tatkowski, Esref Ozdemir, Adrian Balla,

Marcin Copik, Marek Koneieczny, OnurMutlu, and Torsten Hoefler. Graphmine-

suite: Enabling high-performance and programmable graph mining algorithms

[bench. & analysis. unpublished, N.D.

[14] Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger, Andrey

Ivanov, Yishai Oltchik, and Torsten Hoefler. Slim graph: Practical lossy graph

compression for approximate graph processing, storage, and analytics. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–25, 2019.

[15] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97,

March 1996.

[16] Vincent Bouchitté and Ioan Todinca. Listing all potential maximal cliques of a

graph. Theoretical Computer Science, 276(1-2):17–32, 2002.
[17] Coenraad Bron and Joep Kerbosch. Finding all cliques of an undirected graph

(algorithm 457). Commun. ACM, 16(9):575–576, 1973.

[18] Austin Buchanan, Jose L. Walteros, Sergiy Butenko, and Panos M. Pardalos.

Solving maximum clique in sparse graphs: an o(nm+n2
d/4

algorithm for d-

degenerate graphs. Optim. Lett., 8(5):1611–1617, 2014.
[19] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu.

Finding maximal cliques in massive networks. ACM Transactions on Database
Systems (TODS), 36(4):1–34, 2011.

[20] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. Fast algorithms for

maximal clique enumeration with limited memory. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1240–1248, 2012.

[21] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.

SIAM J. Comput., 14(1):210–223, 1985.
[22] Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.

[23] Diane J Cook and Lawrence B Holder. Mining graph data. John Wiley & Sons,

2006.

[24] Intel
®
Corporation. Intel®product specifications. https://ark.intel.com/content/

www/us/en/ark.html#@Processors. Accessed: 2021-02-23.

[25] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse

real-world graphs. In Pierre-Antoine Champin, Fabien L. Gandon, Mounia

Lalmas, and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 589–598. ACM, 2018.

[26] Centro Svizzero di Calcolo Scientifico. Cscs home page. https://www.cscs.ch.

Acessed: 2021-02-23.

[27] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and

completeness I: basic results. SIAM J. Comput., 24(4):873–921, 1995.
[28] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized

Complexity. Texts in Computer Science. Springer, 2013.

[29] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in

sparse graphs in near-optimal time. In Otfried Cheong, Kyung-Yong Chwa, and

Kunsoo Park, editors,Algorithms and Computation - 21st International Symposium,
ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I, volume

6506 of Lecture Notes in Computer Science, pages 403–414. Springer, 2010.
[30] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Top-k overlapping densest

subgraphs. Data Mining and Knowledge Discovery, 30(5):1134–1165, 2016.
[31] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[32] Inc. GCC Team, Free Software Foundation.

[33] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph

mining algorithms. The Knowledge Engineering Review, 28(1):75–105, 2013.
[34] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of

algorithms for dense subgraph discovery. In Managing and Mining Graph Data,
pages 303–336. Springer, 2010.

[35] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[36] Rong-Hua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

Ordering heuristics for k-clique listing. Proceedings of the VLDB Endowment,
13(12):2536–2548, 2020.

[37] Don R. Lick and Arthur T. White. k-degenerate graphs. Canadian Journal of
Mathematics, 22(5):1082–1096, 1970.

[38] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. J. ACM, 30(3):417–427, 1983.

[39] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. Scalable large near-clique detection in large-scale networks

via sampling. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 815–824, 2015.

[40] Natwar Modani and Kuntal Dey. Large maximal cliques enumeration in sparse

graphs. In Proceedings of the 17th ACM conference on Information and knowledge
management, pages 1377–1378, 2008.

[41] C. St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal
of the London Mathematical Society, s1-36(1):445–450, 1961.

[42] Christos H. Papadimitriou and Mihalis Yannakakis. The clique problem for

planar graphs. Information Processing Letters, 13(4):131–133, 1981.
[43] Saif Ur Rehman, Asmat Ullah Khan, and Simon Fong. Graph mining: A survey

of graph mining techniques. In Seventh International Conference on Digital
Information Management (ICDIM 2012), pages 88–92. IEEE, 2012.

[44] John H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1st edition, 1993.

[45] J. M. Robson. Algorithms for maximum independent sets. J. Algorithms, 7(3):425–
440, 1986.

[46] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-

active graph analytics and visualization. In AAAI, 2015.
[47] Matthew C Schmidt, Nagiza F Samatova, Kevin Thomas, and Byung-Hoon Park.

A scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel
and Distributed Computing, 69(4):417–428, 2009.

[48] Bin Shao, Haixun Wang, and Yanghua Xiao. Managing and mining large graphs:

systems and implementations. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 589–592, 2012.

[49] Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and

peeling algorithms. CoRR, abs/2002.10047, 2020.
[50] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Patterns and anomalies in

k-cores of real-world graphs with applications. Knowl. Inf. Syst., 54(3):677–710,
2018.

[51] Lei Tang and Huan Liu. Graph mining applications to social network analysis.

In Managing and Mining Graph Data, pages 487–513. Springer, 2010.
[52] Etsuji Tomita, Tatsuya Akutsu, and Tsutomu Matsunaga. Efficient algorithms

for finding maximum and maximal cliques: Effective tools for bioinformatics.

In Biomedical engineering, trends in electronics, communications and software.
IntechOpen, 2011.

[53] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time

complexity for generating all maximal cliques and computational experiments.

https://ark.intel.com/content/www/us/en/ark.html#@Processors
https://ark.intel.com/content/www/us/en/ark.html#@Processors
https://www.cscs.ch
http://snap.stanford.edu/data

Theor. Comput. Sci., 363(1):28–42, 2006.
[54] Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Pro-

ceedings of the 24th International Conference on World Wide Web, WWW 2015,
Florence, Italy, May 18-22, 2015, pages 1122–1132, 2015.

[55] David R. Wood. On the maximum number of cliques in a graph. Graphs Comb.,
23(3):337–352, 2007.

[56] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. Diversified

top-k clique search. The VLDB Journal, 25(2):171–196, 2016.

A WORK BOUNDS CONTINUED
For completeness, we include the remaining derivation of the work

of our algorithm.We prove the contribution of the intersections and

the edge existence probing separately in Appendix A.1 and combine

them with the clique listing term from Section 2.2 in Appendix A.2.

A.1 Recursive Work Cost
We bound the work incurred by Algorithm 2 for intersecting the

edge neighborhoods. Note that because every community (and

candidate set 𝐼) has size at most 𝛾 by assumption and the sets are

sorted in advance, the cost of any particular intersection is at most

𝑑𝛾 for some constant 𝑑 .

Lemma A.1. Let 𝑄 (𝑐, 𝐼) be the work of Algorithm 2 incurred for
intersection of sets, for a graph where the largest community has size
𝛾 . Then, we have for 𝑐 ≥ 3,

𝑄 (𝑐, 𝐼) ≤ 𝑑𝛾
©­«
𝑟 (𝑐−3)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬ |R𝐸𝑐−2 (𝐺 [𝐼]) |.

Proof. The proof is again by induction on 𝑐 . For the base case

𝑐 = 2 there are trivially no intersections required. For the cases 𝑐 = 3

and 𝑐 = 4, the algorithm only needs to intersect the community of

each edge relevant with respect to 1 (resp., 2) once with 𝐼 and the

bound holds. Assume that the bound holds for all 𝑐 ′ ≤ 𝑐 . We show

that it also holds in the case 𝑐 + 2. For that, we start with a recursive

expression for the work and apply the induction hypothesis.

𝑄 (𝑐, 𝐼) (12)

≤
∑︁

𝑒∈R𝐸
𝑐−2 (𝐺 [𝐼])

𝑑𝛾 +𝑄 (𝑐 − 2, 𝐼 ∩𝐶 (𝑒)), (13)

≤
∑︁

𝑒∈R𝐸
𝑐−2 (𝐺 [𝐼])

𝑑𝛾 +

𝑑𝛾
©­«
𝑟 (𝑐−5)∑︁
𝑝=0

(
|𝐼 ∩𝐶 (𝑒) | − 𝑐 + 4

2

)
2𝑝ª®¬ |R𝐸𝑐−4 (𝐺 [𝐼 ∩𝐶 (𝑒)]) | (14)

We rearrange the terms and use that |𝐼 ∩𝐶 (𝑒) | ≤ |𝐼 | − 2:

≤ 𝑑𝛾 |R𝐸𝑐−2 (𝐺 [𝐼]) | +

𝑑𝛾
©­«
𝑟 (𝑐−5)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬

∑︁
𝑒∈R𝐸

𝑐−2 (𝐺 [𝐼])
|R𝐸𝑐−4 (𝐺 [𝐼 ∩𝐶 (𝑒)]) | .

(15)

Now, we apply Lemma 2.2:

≤ 𝑑𝛾 |R𝐸𝑐−2 (𝐺 [𝐼]) | +

𝑑𝛾
©­«
𝑟 (𝑐−5)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬

(
|𝐼 | − 𝑐 + 2

2

)
2

|R𝐸𝑐−2 (𝐺 [𝐼]) | (16)

≤ 𝑑𝛾 |R𝐸𝑐−2 (𝐺 [𝐼]) | +

𝑑𝛾
©­«
𝑟 (𝑐−5)+1∑︁

𝑝=1

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬ · |R𝐸𝑐−2 (𝐺 [𝐼]) | . (17)

Now, we use Observation 2 and use pull the first term into the sum

as well. This results in the desired form, which concludes the proof:

𝑄 (𝑐, 𝐼) ≤ 𝑑𝛾 · ©­«
𝑟 (𝑐−3)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬ |R𝐸𝑐−2 (𝐺 [𝐼]) | . (18)

□

Next, we bound the cost incurred for probing for edge existence.

By building a perfect hash table (or a adjacency matrix for each

subgraph induced by 𝐶 (𝑒) for every edges 𝑒), the cost to probe for

the existence of an edge is at most some constant 𝑓 .

Lemma A.2. Let 𝑆 (𝑐, 𝐼) be the work of Algorithm 2 incurred for
probing for edge existence. Then, we have for 𝑐 ≥ 2,

𝑆 (𝑐, 𝐼) ≤ 𝑓 · ©­«
𝑟 (𝑐−2)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬ |R𝑃𝑐−2 (𝐼) |

Proof. The proof is by induction. If 𝑐 = 2 or 𝑐 = 3, then the

algorithm only needs to test all pairs relevant with respect to 0 or 1

in 𝐼 once and the bound holds. Assume that the bound holds for all

𝑐 ′ ≤ 𝑐 . We show that it also holds in the case 𝑐 + 2. We write:

𝑆 (𝑐, 𝐼) (19)

≤ 𝑓 |R𝑃𝑐−2 (𝐼) | +
∑︁

𝑒∈R𝐸
𝑐−2 (𝐺 [𝐼])

𝑆 (𝑐 − 2, 𝐼 ∩𝐶 (𝑒)) (20)

≤ 𝑓 |R𝑃𝑐−2 (𝐼) | +∑︁
𝑒∈R𝐸

𝑐−2 (𝐺 [𝐼])

©­«
𝑟 (𝑐−4)∑︁
𝑝=0

(
|𝐼 ∩𝐶 (𝑒) | − 𝑐 + 4

2

)
2𝑝ª®¬ |R𝑃𝑐−4 (𝐼 ∩𝐶 (𝑒)) |

(21)

Use that |𝐼 ∩𝐶 (𝑒) | ≤ |𝐼 | − 2, to pull two factors in front of the sum:

≤ 𝑓 |R𝑃𝑐−2 (𝐼) | + (22)

𝑓
©­«
𝑟 (𝑐−4)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬

∑︁
𝑒∈R𝐸

𝑐−2 (𝐺 [𝐼])
|R𝑃𝑐−4 (𝐼 ∩𝐶 (𝑒)) | .

(23)

We use Lemma 2.2 on the graph 𝐺 [𝐼] and use that every relevant

edge is also a relevant pair:

≤ 𝑓 |R𝑃𝑐−2 (𝐼) | +

𝑓
©­«
𝑟 (𝑐−4)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬

(
|𝐼 | − 𝑐 + 2

2

)
2

|R𝑃𝑐−2 (𝐼) | (24)

= 𝑓 |R𝑃𝑐−2 (𝐼) | + 𝑓
©­«
𝑟 (𝑐−4)+1∑︁

𝑝=1

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬ |R𝑃𝑐−2 (𝐼) | (25)

Now, we apply observation 2 and pull the first term into the sum.

We arrive at the desired form, concluding the proof:

𝑆 (𝑐, 𝐼) ≤ 𝑓
©­«
𝑟 (𝑐−2)∑︁
𝑝=0

(
|𝐼 | − 𝑐 + 2

2

)
2𝑝ª®¬ |R𝑃𝑐−2 (𝐼) | (26)

□

A.2 Overall Work Bound
So far, we derived the work of Algorithm 2. Now, we will apply the

outer most loop in Algorithm 1: The loop itself simply iterates over

all relevant edges and calls Algorithm 2 with 𝑐 = 𝑘−2. Note, that we
can simplify the call to the base case function 𝑏 with Observation 2

and the fact that 𝑘 − 2 and 𝑘 are either both even or both odd.

𝑊 ≤
∑︁

𝑒∈R𝐸
𝑘−2 (𝐺)

𝑊 (𝑘 − 2,𝐶 (𝑒)), (27)

≤ 𝑓
∑︁

𝑒∈R𝐸
𝑘−2 (𝐺)

©­«
𝑟 (𝑘−4)∑︁
𝑝=0

(
|𝐶 (𝑒) | − 𝑘 + 4

2

)
2𝑝ª®¬ |R𝑃𝑘−4 (𝐶 (𝑒)) |

+ 𝑑𝛾
∑︁

𝑒∈R𝐸
𝑘−2 (𝐺)

©­«
𝑟 (𝑘−5)∑︁
𝑝=0

(
|𝐶 (𝑒) | − 𝑘 + 4

2

)
2𝑝ª®¬ |R𝐸𝑘−4 (𝐺 [𝐶 (𝑒)]) |

+
∑︁

𝑒∈R𝐸
𝑘−2 (𝐺)

(
|𝐶 (𝑒) | − 𝑘 + 4

2

)
2𝑟 (𝑘−4)

|R𝐸
𝑘−4 (𝐺 [𝐶 (𝑒)]) |

· 𝑏 (𝑘, |𝐶 (𝑒) | − 2𝑟 (𝑘 − 2)) . (28)

Use that |𝐶 (𝑒) | ≤ 𝛾 by assumption:

𝑊 ≤ 𝑓
©­«
𝑟 (𝑘−4)∑︁
𝑝=0

(
𝛾 − 𝑘 + 4

2

)
2𝑝ª®¬

∑︁
𝑒∈R𝐸

𝑘−2 (𝐺)
|R𝑃

𝑘−4 (𝐶 (𝑒)) |

+ 𝑑𝛾 ©­«
𝑟 (𝑘−5)∑︁
𝑝=0

(
𝛾 − 𝑘 + 4

2

)
2𝑝ª®¬

∑︁
𝑒∈R𝐸

𝑘−2 (𝐺)
|R𝐸

𝑘−4 (𝐺 [𝐶 (𝑒)]) |

+
(
𝛾 − 𝑘 + 4

2

)
2𝑟 (𝑘−4)

𝑏 (𝑘,𝛾 − 2𝑟 (𝑘 − 2))
∑︁

𝑒∈R𝐸
𝑘−2 (𝐺)

|R𝐸
𝑘−4 (𝐺 [𝐶 (𝑒)]) |.

(29)

Now, apply Lemma 3.1 to bound the number of relevant edges and

pairs in the subgraphs induced by all relevant edges in 𝐺 :

𝑊 ≤ 2𝑓 · ©­«
𝑟 (𝑘−4)+1∑︁

𝑝=1

(
𝛾 − 𝑘 + 4

2

)
2𝑝ª®¬ |R𝐸𝑘−2 (𝐺) |

+ 2𝑑𝛾 · ©­«
𝑟 (𝑘−5)+1∑︁

𝑝=1

(
𝛾 − 𝑘 + 4

2

)
2𝑝ª®¬ |R𝐸𝑘−2 (𝐺) |

+ 2
(
𝛾 − 𝑘 + 4

2

)
2𝑟 (𝑘−4)+2

𝑏 (𝑘,𝛾 − 2𝑟 (𝑘)) |R𝐸
𝑘−2 (𝐺) |. (30)

= 2𝑓 · ©­«
𝑟 (𝑘−2)∑︁
𝑝=1

(
𝛾 − 𝑘 + 4

2

)
2𝑝ª®¬ |R𝐸𝑘−2 (𝐺) |

+ 2𝑑𝛾 · ©­«
𝑟 (𝑘−3)∑︁
𝑝=1

(
𝛾 − 𝑘 + 4

2

)
2𝑝ª®¬ |R𝐸𝑘−2 (𝐺) |

+ 2
(
𝛾 − 𝑘 + 4

2

)
2𝑟 (𝑘−2)

𝑏 (𝑘,𝛾 − 2𝑟 (𝑘 − 2)) |R𝐸
𝑘−2 (𝐺) |

≤ 2𝑓 · 𝑟 (𝑘 − 2)
(
𝛾 − 𝑘 + 4

2

)
2𝑟 (𝑘−2)

|R𝐸
𝑘−2 (𝐺) |

+ 2𝛾 · 𝑟 (𝑘 − 2)
(
𝛾 − 𝑘 + 4

2

)
2𝑟 (𝑘−3)

|R𝐸
𝑘−2 (𝐺) |

+ 2
(
𝛾 − 𝑘 + 4

2

)
2𝑟 (𝑘−2)

· 𝑏 (𝑘,𝛾 − 2𝑟 (𝑘 − 2)) |R𝐸
𝑘−2 (𝐺) |. (31)

To further simplify the above expression, we make use of a simple

observation:

Observation 7. For 𝑘 ≥ 1, 𝑘 ≤ 𝛾 + 2, it holds that

2𝛾 ≤ 2𝑘 (𝛾 + 4 − 𝑘).

Now recall the definition of the level function:

𝑟 (𝑘) :=
⌊
𝑘

2

⌋
.

Due to the floor operator, it evaluates to the same value for 𝑘 even

and 𝑘 ′ = 𝑘 + 1 odd, but the base case incurs different costs for 𝑘
even and 𝑘 ′ odd. Let’s take a look at the listing part of the cost:

𝑊 (𝑘 even) ≤ 2

(
𝛾 − 𝑘 + 4

2

)𝑘−2
· 𝑘, (32)

𝑊 (𝑘 ′ odd) ≤ 2

(
𝛾 − 𝑘 ′ + 4

2

)𝑘′−3
· 𝑘 ′(𝛾 − (𝑘 ′ − 3)), (33)

≤ 2

(
𝛾 − 𝑘 ′ + 4

2

)𝑘′−3
· 𝑘 ′2𝛾 − 𝑘

′ + 4
2

, (34)

≤ 4

(
𝛾 − 𝑘 ′ + 4

2

)𝑘′−2
· 𝑘 ′ (35)

Together with Observation 7, we see that if 𝑘 is even, then the test

and listing terms are dominant. In the odd case, the listing term

is the dominant one, closely followed by the testing term. This

concludes the wo

Graph |𝑉 | |𝐸 | |𝑇 | 𝑠
|𝐸 |
|𝑉 |

|𝑇 |
|𝑉 |

|𝑇 |
|𝐸 |

Orkut 3.1M 117.2M 627.6M 253 38.1 204.6 5.4

Ca-DBLP-2012 317K 1M 2.2M 113 3.3 7 2.1

Tech-As-Skitter 1.7M 11.1M 28.8M 111 6.5 17 2.6

Gearbox 153.7K 4.5M 4.6M 44 29 30 1

Chebyshev4 68K 1.9M 28.9M 68 28.9 424.2 14.7

Jester2 50.1K 1.7M 35.6M 128 34.1 703.3 20.6

Bio-SC-HT 2084 63K 1.4M 100 30.2 670.7 22.2

Table 2: Overview over the selected graphs. 𝑠 is the degen-
eracy; 𝑇 denotes the triangles in the graph. All graphs are
publicly available [35, 46] and have been symmetrized.

B EXPERIMENTAL EVALUATION
In this section, we present an empirical evaluation of Algorithm 1.

For all experiments, we use the (exact) degeneracy order from

Section 4.1. We compare our implementation with the state-of-the-

art implementations by Danisch et al. [25] and Shi et al. [49].

B.1 Data Set
We assembled a set of graphs to test the different implementations.

These graphs represent different fields of applications and exhibit

different structural properties [13]. Table 2 provides a brief overview

of the graphs. The graphs ‘Tech-as-skitter’, ‘Ca-DBLP-2012’ and

‘Orkut’ have already been used previously for benchmarking by

Danisch et al. [25] and Shi et al. [49]. Orkut is a relatively large

online social network, Ca-DBLP-2012 is the collaboration network

of the DBLP 2012, and Tech-as-Skitter is an internet topology graph,

generated in 2005 by daily traceroutes [35].

In addition, we added some non-standard graphs to the set: ‘Gear-

box’, ‘Chebyshev4’, ‘Bio-SC-HT’ and ‘Jester2’. Gearbox is a struc-

tural network from an aircraft flap actuator. Chebyshev4 is a struc-

tural network as well. It is derived from a 4th order Chebyshev

scheme for numerical integration. Jester2 is a joke-rating network,

and Bio-SC-HT is a network derived from functional gene associa-

tions [46].

B.2 Experimental Setup
The bulk of our experiments was performed on the Piz Daint Com-

puting platform by CSCS. We used the XC40 Multicore Compute

nodes, equipped with two Intel
®
Xeon

®
E5-2695 v4 2.10GHz, 18

cores/36 threads, 45MB of Intel
®
Smart Cache and each with 64/128

GB RAM [24, 26].

The code was compiled in both instances with GCC 8.3 with

the optimization flags -O3 and -march=native. Piz Daint supports
AVX2. GCC 8.3 supports OpenMP 4.5 [32], which was chosen for

parallel programming.

All measurements were repeated at least 10 times, except for the

runs for Orkut and Jester with 𝑘 ≥ 7, which were repeated 5 times

0.
81

0.
68

1.
75

2.
28

1.
62

2.
49

6.
18

4.
44.

83

14
.1

9

10
.1

8

7.
44

28
.1

19
.8

6

14
.2

9

 0.5

 4.0

32.0

6 7 8 9 10

Clique size k

To
ta

l R
un

tim
e

[s
]

c3List ArbCount kcList

Chebyshev4 (Piz Daint, 72 threads)

Figure 7: Results on the Chebyshev4 graph.

due to the long running times. The reported times are arithmetic

averages over all measurements.

B.3 Results
See Figure 7, Figure 8 and Figure 9 for the comparison of our al-

gorithm (c3List) with Shi et al. (ArbCount [49]) and Danisch et al.

(kcList [25]). We report the runtime for 72 threads and vary the

clique size 𝑘 from 6 to 10.

The empirical standard deviation of the runtimes is less than

5.2% for clique sizes 𝑘 ≥ 8 for all algorithms and all graphs except

the Gearbox graphs (which can be solved quickly). For Gearbox

graphs with 𝑘 = 10, the standard deviation is less than 6.4%. Other

results need to be interpreted with care, as the standard deviation

is larger than 10% for at least one graph and algorithm.

For small clique sizes (𝑘 < 8), it depends on the graph which

algorithm is fastest. These results also have a higher variance.

For larger clique sizes (𝑘 ≥ 8), Shi et al. [49] generally outperform

Danisch et al. [25]. Our community-centric algorithm is faster than

both on a majority of the instances starting at 𝑘 = 8. The advantage

of our implementation over the others generally grows with the

clique size. This trend might be because of the non-constant base

to the exponent in the work bounds of our algorithm.

Overall, for cliques of size 𝑘 ≥ 9, our algorithm is slower in

one instance (Orkut) and outperforms the others by 3.4 − 37.9%.
Our algorithm appears to be relatively better when there are few

triangles per vertex. For those graphs (Tech-As-Skitter, Gearbox,

CA-DBLP-2012), our algorithm is 16.5 − 37.9% and 13.8 − 33.7%

faster than the next fastest implementation for cliques of size 9 and

10, respectively. The good performance on those graphs could be

because our pruning technique is particularly effective when there

are fewer triangles.

1

1.
16

1.
61

2.
19

1.
9

2

5.
03

3.
88

3.
54

10
.9

7.
74

4.
81

21
.4

5

13
.8

5

9.
18

 0.5

 4.0

32.0

6 7 8 9 10

Clique size k

To
ta

l R
un

tim
e

[s
]

c3List ArbCount kcList

Gearbox (Piz Daint, 72 threads)

(a)

1.
02

0.
37

1.
02

3.
94

2.
46

2.
45

42
.3

2

30
.3

27
.3

6

49
2.

14

35
5.

61

24
6.

82

52
17

.8
2

37
44

.3
9

31
06

.4

 1

 16

 256

4096

6 7 8 9 10

Clique size k
To

ta
l R

un
tim

e
[s

]

c3List ArbCount kcList

Ca−DBLP−2012 (Piz Daint, 72 threads)

(b)

14
.9

6

3.
14

18
.0

6

20
.5

7

6.
63

20
.9

7

58
.5

1

33
.2

8

44
.6

9

28
3.

44

19
5.

61

16
3.

38

14
79

.4
3

10
68

.9
8

92
1.

66

 1

 16

 256

4096

6 7 8 9 10

Clique size k

To
ta

l R
un

tim
e

[s
]

c3List ArbCount kcList

Tech−As−Skitter (Piz Daint, 72 threads)

(c)

13
1.

8

35
.0

3

18
6.

78

16
8.

47

63
.7

20
0.

78 34
6.

78

17
9.

8531
2.

01

11
17

.5
3

67
2.

87

70
7.

26

43
27

.2
8

27
34

.5
8

26
93

.8
2

 1

 16

 256

4096

6 7 8 9 10

Clique size k

To
ta

l R
un

tim
e

[s
]

c3List ArbCount kcList

Orkut (Piz Daint, 72 threads)

(d)

Figure 8: Runtime Results for 72 threads for varying clique sizes. Our algorithm is c3List, ArbCount is by Shi et al. [49], and
kcList is by Danisch et al. [25]

4.
51

2.
84

6.
28

33
.0

5

21
.2

2

23
.2

9

20
6.

66

13
9.

02

14
2.

68

11
21

.9
6

80
0.

1

68
8.

93

54
14

.9

38
35

.7

36
43

.4
 1

 16

 256

4096

6 7 8 9 10

Clique size k

To
ta

l R
un

tim
e

[s
]

c3List ArbCount kcList

Jester2 (Piz Daint, 72 threads)

(a)

0.
31

0.
210.

26

3.
18

2.
05

1.
73

27
.6

6

18
.2

7

17
.4

4

21
0.

2

13
9.

7

11
6.

59

14
15

.2
4

96
5.

34

93
2.

59

 1

 16

 256

4096

6 7 8 9 10

Clique size k
To

ta
l R

un
tim

e
[s

]

c3List ArbCount kcList

Bio−SC−HT (Piz Daint, 72 threads)

(b)

Figure 9: Runtime Results for 72 threads for varying clique sizes. Our algorithm is c3List, ArbCount is by Shi et al. [49], and
kcList is by Danisch et al. [25]

	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Related Work
	1.3 Our Contributions

	2 Community-Centric Clique Listing
	2.1 Algorithm Construction
	2.2 Work/Depth Analysis

	3 Combinatorics
	3.1 Additional Notation
	3.2 Bounds on Relevant Edges and Pairs

	4 Graph Orientation
	4.1 Computing a Degeneracy Order
	4.2 The Hybrid Approach
	4.3 Parameterizing by Community Degeneracy

	5 Conclusion and Future Work
	References
	A Work Bounds Continued
	A.1 Recursive Work Cost
	A.2 Overall Work Bound

	B Experimental Evaluation
	B.1 Data Set
	B.2 Experimental Setup
	B.3 Results

