Graph Processing on FPGAs: Taxonomy, Survey, Challenges

Towards Understanding of Modern Graph Processing, Storage, and Analytics

MACIE] BESTA*, DIMITRI STANOJEVIC*, Department of Computer Science, ETH Zurich
JOHANNES DE FINE LICHT, TAL BEN-NUN, Department of Computer Science, ETH Zurich
TORSTEN HOEFLER, Department of Computer Science, ETH Zurich

Graph processing has become an important part of various areas, such as machine learning, computational
sciences, medical applications, social network analysis, and many others. Various graphs, for example web
or social networks, may contain up to trillions of edges. The sheer size of such datasets, combined with
the irregular nature of graph processing, poses unique challenges for the runtime and the consumed power.
Field Programmable Gate Arrays (FPGAs) can be an energy-efficient solution to deliver specialized hardware
for graph processing. This is reflected by the recent interest in developing various graph algorithms and
graph processing frameworks on FPGAs. To facilitate understanding of this emerging domain, we present the
first survey and taxonomy on graph computations on FPGAs. Our survey describes and categorizes existing
schemes and explains key ideas. Finally, we discuss research and engineering challenges to outline the future
of graph computations on FPGAs.

CCS Concepts: » General and reference — Surveys and overviews; « Computer systems organization
— Reconfigurable computing; - Hardware — Reconfigurable logic and FPGAs; Hardware accelera-
tors; Reconfigurable logic applications; - Mathematics of computing — Graph theory; « Information
systems — Data layout; » Theory of computation — Parallel algorithms; Vector / streaming algorithms;

Additional Key Words and Phrases: FPGAs, Reconfigurable Architectures, Graph Processing, Graph Computa-
tions, Graph Analytics, Vertex-Centric, Edge-Centric

ACM Reference format:
Maciej Besta*, Dimitri Stanojevic*, Johannes de Fine Licht, Tal Ben-Nun, and Torsten Hoefler. 2019. Graph
Processing on FPGAs: Taxonomy, Survey, Challenges. 31 pages.

1 INTRODUCTION

Graph processing underlies many computational problems in social network analysis, machine
learning, computational science, and others [66, 84]. Designing efficient graph algorithms is chal-
lenging due to several properties of graph computations such as irregular communication patterns
or little locality. These properties, combined with the sheer size of graph datasets (up to trillions of
edges [35]), make graph processing and graph algorithms consume large amounts of energy.
Most graph algorithms are communication-heavy rather than compute-heavy: more time is spent
on accessing and copying data than on the actual computation. For example, in a Breadth-First

*Both authors contributed equally to the work

1:2 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

Search (BFS) traversal [39], a fundamental graph algorithm, one accesses the neighbors of each
vertex. In many graphs, for example various social networks, most of these neighborhoods are
small (i.e., contain up to tens of vertices), while some are large (i.e., may even contain more than
half of all the vertices in a graph). General purpose CPUs are not ideal for such data accesses: They
have fixed memory access granularity based on cache line sizes, do not offer flexible high-degree
parallelism, and their caches do not work effectively for irregular graph processing that have little
or no temporal and spatial locality. GPUs, on the other hand, offer massive parallelism, but exhibit
significantly reduced performance when the internal cores do not execute the same instruction
(i.e., warp divergence), which is common in graphs with varying degrees.

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be reprogrammed using
hardware description languages. This allows for rapid prototyping of application-specific hardware.
An FPGA consists of an array of logic blocks that can be arbitrarily rewired and configured to
perform different logical operations. FPGAs usually use low clock frequencies of ~100-200MHz,
but they enable building custom hardware optimized for a given algorithm. Data can directly be
streamed to the FPGA without the need to decode instructions, as done by the CPU. This data
can then be processed in pipelines or by a network of processing units that is implemented on
the FPGA, expressing parallelism at a massive scale. Another major advantage of FPGAs is the
large cumulated bandwidth of their on-chip memory. Memory units on the FPGA, such as block
RAM (BRAM), can be used to store reusable data to exploit temporal locality, avoiding expensive
interactions with main memory. On a Xilinx Alveo U250 FPGA, 2566 memory blocks with 72 bit
ports yield an on-chip bandwidth of 7 TB/s at 300 MHz, compared to 1 TB/s for full 256-bit AVX
throughput at maximum turbo clock on a 12-core Intel Xeon Processor E5-4640 v4 CPU. In practice,
the advantage of FPGAs can be much higher, as buffering strategies are programmed explicitly, as
opposed to the fixed replacement scheme on a CPU.

Developing an application-specific FPGA accelerator usually requires more effort than imple-
menting the same algorithm on the CPU or GPU. There are also many other challenges. For example,
modern FPGAs contain in the order of tens of MB of BRAM memory, which is not large enough
to hold entire graph data sets used in today’s computations. Therefore, BRAM must be used as
efficiently as possible, for example by better optimizing memory access patterns. Thus, a significant
amount of research has been put into developing both specific graph algorithms on FPGAs and graph
processing frameworks that allow to implement various graph algorithms easier, without having
to develop everything from scratch [40, 41, 49, 76, 79, 80, 85, 93, 94, 125, 127, 129, 130, 134-136].

This paper provides the first taxonomy and survey that attempts to cover all the associated areas
of graph processing on FPGAs. Our goal is to (1) exhaustively describe related work, (2) illustrate
and explain the key ideas, and (3) systematically categorize existing algorithms, schemes, techniques,
methodologies, and concepts. We focus on all works researching graph computations on FPGAs,
both general frameworks as well as implementations of specific graph algorithms.

What Is the Scope of Existing Surveys? To the best of our knowledge, as of yet there is no
other survey on FPGAs for graph processing. Only Horawalavithana [128] briefly reviews several
hardware accelerators and frameworks for graph computing and discusses problems and design
choices. However, the paper only partially focuses on FPGAs and covers only a few selected works.

2 BACKGROUND

We first present concepts used in all the sections and summarize the key symbols in Table 1.

Graph Processing on FPGAs: Taxonomy, Survey, Challenges 1:3

G, A A graph G = (V, E) and its adjacency matrix; V and E are sets of vertices and edges.
n, m Numbers of vertices and edges in G; |V | = n, |E| = m.

d, d, D Average degree, maximum degree, and the diameter of G, respectively.

dy, Ny, The degree and the sequence of neighbors of a vertex v.

Bpraam The bandwidth between the FPGA and DRAM.

Bgram The bandwidth of a BRAM module.

Table 1. The most important symbols used in the paper.

2.1 Graphs

We model an undirected graph G as a tuple (V, E); V is a set of verticesand E C V X V is a set of
edges; |V| = nand |E| = m. If G is directed, we use the name arc to refer to an edge with a specified
direction. An edge between vertices v and w is denoted as (v, w). We consider both labeled and
unlabeled graphs. If a graph is labeled, V' = {1, ..., n}, unless stated otherwise. We use the name
“label” or “ID” interchangeably. N, and d,, are the neighbors and the degree of a vertex v. G’s
diameter is D. A subgraph of G is a graph G’ = (V’, E’) such that V' C V and E’ C E. In an induced
subgraph, E’ contains only edges (v, w) such that both v and w are in V’. A path in G is a sequence
of edges in G between two vertices v and w: (v, v1), (V1,V2), ., (Vn—1,Vn), (Vn, W).

2.2 Graph Processing Abstractions

Graph algorithms such as BFS can be viewed in either the traditional combinatorial abstraction
or in the algebraic abstraction [18, 73]. In the former, graph algorithms are expressed with data
structures such as queues or bags and operations on such structures such as inserting a vertex into
a bag [81]. In the latter, graph algorithms are expressed with basic linear algebra structures and
operations such as a series of matrix-vector (MV) or matrix-matrix (MM) products over various
semirings [74]. Both abstractions have advantages and disadvantages in the context of graph
processing. For example, BFS based on MV uses no explicit locking [105] or atomics [106] and has
a succinct description. Yet, it may need more work than the traditional BFS [126].

2.3 Graph Representations and Data Structures

We discuss various graph-related structures used in FPGA works.

2.3.1 Adjacency Matrix, Adjacency List, Compressed-Sparse Row. G can be represented as an
adjacency matrix (AM) or adjacency lists (AL). AL uses O(nlog n) bits and AM uses O (nz) bits.

When using AL, a graph is stored using a contiguous array with the adjacency data and a structure
with offsets to the neighbors of each vertex. When using AM, the graph can be stored using the
well-known Compressed-Sparse Row (CSR) format [103]. In CSR, the corresponding AM is
represented with three arrays: val, col, and row. val contains all matrix non-zeros (that correspond
to G’s edges) in the row major order. col contains the column index for each corresponding value
in wval; it has the same size (O(m)). Finally, row contains starting indices in val (and col) of the
beginning of each row in the AM (size O(n)).

2.3.2 Sparse and Dense Data Structures. Data structures used in graph processing, such as
bitvectors, can be either sparse or dense. In the former, one only stores non-zero elements from
a given structure, together with any indices necessary to provide locations of these elements. In
the latter, zeros are also stored. In the case of MV, the adjacency matrix is usually sparse (e.g.,
when using CSR) while the vector can be sparse or dense, respectively resulting in sparse-sparse
(SpMSpV) and sparse-dense (SpMV) MV products. The latter entail more work but offer more
potential for vectorization; the former is work-efficient but has more irregular memory accesses.

1:4 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

Associated

Graph problem + time complexity of the best Associated example algorithm and its time/work Selected

(or established) sequential algorithm(s) gr;l:(})ll/’::;ex complexity (in the PRAM CRCW model [6]) application
Single-Source Shortest Path Length of a Bipartite
(SSSP) (unweighted) [39] O (m+n) [39] shortest path BES [19] o (Dd+D log m) O (m) testing

. O (m+nlogn)[52], Lengthofa A-Stepping [88], o (“Wp - logn + log n) » Robotics,
SSSP (weighted) [39] O(m) [115] shortest path Bellman-Ford [9] o (n m+d-Wp - log n) VLSI design
All-Pairs Shortest Path o] (mn +n?) [39], Length of a — Urban
(APSP) (unweighted) [39] 0(n?) [50]) shortest path BFS [19] o (Dd + Dlog m) O (nm) planning
All-Pairs Shortest Path 2 _, Length of a Traffic
(APSP) (weighted) [39] o (mn +n°log n) (>2] shortest path Han et al. [57] o () () routing
[Weakly, Strongly] #Connected Verifvin
Connected Components [39], O (m + n) [39] components, Shiloach-Vishkin [107] O (log n), O (mlog n) e
connectivit

Reachability Reachability Y

. . 0 (md), . —2 — Cluster
Triangle Counting (TC) [108] o (m3/2) [104] #Triangles ~ GAPBS kernel [8] @] (a') o (md) analysis
Minimum Spanning O (mlogn) [39], . Design of
Tree (MST) [39] O(ma(m, n)) [33] MST weight Boruvka [28] O (log n), O (mlogn) networks
Maximum Weighted 2 . . Comp.
Matching (MWM) [97] (@] (mn) MWM weight Blossom Algorithm [47] — chemistry
Betweenness Centrality ’) O (nDd + nD logm), Network
(BC) [29] (unweighted) O (nm) [29] Betweenness Parallel Brandes [8, 29] o gnm)) analysis
BC [29] (weighted) o (nm + n?log n) [29] Betweenness Parallel Brandes [8, 29] — :f;;;g;sk
Degree Centrality (DC) [39] O (m + n) [39] Degree Simple listing [39] 0(1),0(m+n) 5:21:;:5
PageRank (PR) [96] O (Im) [8] Rank GAPBS kernel [8] 0 (rd), o (Im) afgﬁfi

Table 2. Overview of fundamental graph problems and algorithms considered in FPGA works. TBounds in ex-
pectation or with high probability. a(n, m) is the inverse Ackermann function. Wp is the maximum shortest path weight
between any two vertices. I is the number of iterations in PageRank.

2.4 Graph Problems and Algorithms

We next present graph algorithms that have been implemented on FPGAs. In the survey, we
describe the FPGA designs targeting these algorithms in § 5 (implementations of specific algorithms
on the FPGA) and in § 6 (implementations within generic graph processing frameworks on the
FPGA). A summary of the fundamental graph problems, algorithms, and properties considered in
FPGA-related works can be found in Table 2.

2.4.1 Breadth-First Search (BFS). The goal of Breadth-First Search (BFS) [39] is to visit each
vertex in G. BFS starts with a specified root vertex r and visits all its neighbors N,. Then, it visits all
the unvisited neighbors of r’s neighbors, and continues to process each level of neighbors in one
iteration. During the execution of BFS, the frontier of vertices is a data structure with vertices that
have been visited in the previous iteration and might have edges to unvisited vertices. In the very
first iteration, the frontier consists only of the root r. In each following i-th iteration, the frontier
contains vertices with distance i to the root. The sequential time complexity of BFS is O(n + m).
Traditional BFS In the traditional BFS formulation, a frontier is implemented with a bag. At every
iteration, vertices are removed in parallel from the bag and all their unvisited neighbors are inserted
into the bag; this process is repeated until the bag is empty.

Algebraic BFS BFS can also be implemented with the MV product over a selected semiring. For
example, for the tropical semiring [18], one updates the vector of distances from the root by
multiplying it at every iteration by the adjacency matrix.

Graph Processing on FPGAs: Taxonomy, Survey, Challenges 1:5

2.4.2 Connected Components (CC). A connected component is a subgraph of G where any two
vertices are connected by some path. A connected graph consists of only one connected component.
A disconnected graph can have several connected components. In the context of directed graphs,
a strongly connected component (SCC) must contain paths from any vertex to any other vertex.
In a weakly connected component (WCC), the direction of the edges in a path is not relevant
(i.e., computing WCCs is equivalent to finding CCs when treating the input directed graph as
undirected). Now, the goal of a CC algorithm is to find all connected components in a given graph G.
A simple way to compute CC in linear time is to use BFS and straightforwardly traverse connected
components one by one. Another established algorithm for CC has been proposed by Shiloach and
Vishkin [107]. It is based on forming trees among the connected vertices and then dynamically
shortening them using pointer jumping. In the end, each connected component is represented by
one tree consisting of two levels of vertices: a tree root and its children. The parallel (under the
CRCW PRAM model [56]) time complexity of this algorithm is O(log n).

2.4.3 Reachability. Reachability is a problem strongly related to CC. Namely, it answers the
question of whether there exists a path between any two vertices. Algorithms for finding connected
components can be used to solve this problem.

2.4.4 Single-Source Shortest-Paths (SSSP). A shortest path between two vertices v, w is a path
where either the number of edges or, in the case of a weighted graph, the sum of all weights in the
path, is the smallest out of all paths between v and w. In the Single-Source Shortest-Paths (SSSP)
problem, one finds the shortest path between a given source vertex and all other vertices in the graph.
Two well-known solutions are Dijkstra’s algorithm [45] and the Bellman-Ford algorithm [9, 51].
The Bellman-Ford algorithm has a sequential time complexity of O(nm) and can be used for graphs
with negative edge weights, while Dijkstra’s algorithm, if implemented with a Fibonacci heap, has
a better sequential time complexity of O(nlogn + m) but cannot handle negative edges.

2.4.5 All-Pairs Shortest-Paths (APSP). The All-Pairs Shortest-Paths (APSP) problem is to find the
shortest paths between all pairs of vertices in the graph. One solution, called Johnson’s algorithm,
is to use the SSSP algorithms such as Dijkstra and Bellman-Ford [67]. In case of unweighted graphs,
the algorithm can be further reduced to BFS. The worst-case sequential runtime is O(n? log n + nm).
Johnson’s algorithm for weighted graphs requires a Fibonacci heap, which may be difficult to
implement. Another solution is the Floyd-Warshall algorithm [50], which has the O(n®) sequential
time complexity and is based on dynamic programming.

2.4.6 Minimum Spanning Tree (MST). A spanning tree of a graph is defined as a tree subgraph
that includes all the vertices of the graph and a subset of the edges with minimal size. An MST is
thus a spanning tree where the edge weight sum is minimal. There exist several algorithms to find
the MST of a graph, notably Boruvka’s algorithm [28], which runs in parallel at a time complexity of
O (log n); the sequential Prim’s Algorithm [101] with O (m + nlog n) complexity (using a Fibonacci
heap); and Kruskal’s Algorithm [77] with O (mlog n) time complexity.

2.4.7 PageRank (PR). PageRank (PR) [96] is an iterative centrality algorithm that obtains the
rank r(v) of each vertex v:

r(v) =

L f o forw)
R

weN,,

where f is a parameter called the damp factor [96]. PR is used to rank websites. Intuitively, a vertex
is deemed “important” (has a high rank) if it is being referenced by other high rank vertices.

1:6 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

The papers covered in this survey implement the traditional iterative PR algorithm where, in each
iteration, all edges are processed and the PR of every vertex is recomputed according to the above
equation. Usually the maximum number of iterations is set, the algorithm halts if the maximum
difference between the ranks of a vertex in two iterations converges below a given threshold.

2.4.8 Graphlet Counting (GC), Triangle Counting (TC). Graphlets are small connected induced
subgraphs. An example graphlet is a triangle: a cycle with three vertices. The problem of counting
graphlets (GC) is to count the number of different graphlets in a graph. There exist many algorithms
for counting graphlets of different sizes. For example, TC can be solved in O(m>*/?) time [104].

2.4.9 Betweenness Centrality (BC). Centrality measures of vertices in a graph determine the
“importance” of each vertex . One such measure is Betweenness Centrality [90], which is defined by
the ratio of shortest paths in the graph that pass through a given vertex . More formally:

P, (u,w)
BC(v) =) ——,
u,wev p (u’ W)
Uu, w#v
where P(u, w) indicates the number of shortest paths between u and w and P,, is the number of
shortest paths that pass through v. To compute BC for every vertex, one can use the Brandes

algorithm [29] in parallel [109], which exhibits a total work of O (nm).

2.4.10 Maximum Matching (MM). A matching is defined to be a set of edges E’ C E, where
every vertex in the pairs of E’ is unique, i.e., edges do not share vertices. Maximum Cardinality
Matching and Maximum Weighted Matching (MWM) are commonly computed types of matchings,
where the former is a matching that maximizes |E’| and the latter (only applicable to weighted
graphs) maximizes the sum of the edge weights in E’. MWM can be computed exactly using the
Blossom Algorithm [47], which is inherently sequential.

2.4.11 Graph-Related Applications. In the same way that some graph algorithms (e.g., BFS) can
be implemented with linear algebra operators, many applications outside of graph theory formulate
problems as graphs in order to benefit from increased performance. One such example is Deep
Neural Networks and the Stochastic Gradient Descent algorithm: in the former, sparsely-connected
layers of neurons can be represented as a graph that should be traversed [131]; whereas in the
latter, the algorithm itself creates dependencies that can be modeled as a fine-grained graph and
scheduled dynamically [69].

Another graph-related application considered in the surveyed works is stereo matching [113],
where one accepts a pair of stereo images and outputs the disparity map with depth information of all
pixels. This problem is solved with the Tree-Reweighted Message Passing (TRW-S) algorithm [113].

Finally, one work considers spreading activation [82]. Here, a given graph is traversed (starting
from a selected subset of vertices) in a manner similar to that of a neural network: certain values
called activities are propagated through the graph, updating properties of vertices.

2.4.12 Challenges in Graph Processing for FPGAs. Most challenges for efficient graph processing
on FPGAs are similar across different algorithms. BFS, the algorithm considered most often, exhibits
irregular memory access patterns because it is hard to predict which vertices will be accessed in
the next iteration, before iterating through the neighborhood of vertices currently in the frontier.
Vertices with small distances between them in G are not necessarily close to one another in memory.
Furthermore, most vertices in graphs used in today’s computations have small neighborhoods and
thus prefetching subsequent memory blocks does not always improve performance.

Graph Processing on FPGAs: Taxonomy, Survey, Challenges 1:7

2.5 Graph Programming Paradigms, Models, and Techniques

We also present graph programming models used in the surveyed works. A detailed description
can be found in work by Kalavri et al. [68].

2.5.1 Vertex-Centric Model. In the vertex-centric model [75, 86], the programmer expresses a
graph algorithm from the perspective of vertices. One programs an algorithm by developing a
(usually small) routine that is executed for each vertex in the graph concurrently. In this routine,
one usually has access to the neighbors of a given vertex. Such as approach can lead to many
random memory accesses as neighboring vertices may be stored in different regions of the memory.
Still, it is often used because many important algorithms such as BFS or PageRank can easily be
implemented in this model.

2.5.2 Edge-Centric Streaming Model. In the edge-centric model [102], edges are streamed to the
processor in the order in which they are stored in the graph data structure. An edge consists of the
labels of the two connected vertices and optionally the edge weight. The processor processes edges
one by one and, if necessary, it updates some associated data structures. This way of accessing
the graph has major advantages because of its sequential memory access pattern, which improves
spatial locality. A disadvantage of this approach is the restriction on the order of loading and thus
processing edges. This makes the model less suitable for certain algorithms, for example BFS or
SSSP. For example, the edge-centric BFS requires several passes over the edges, with each pass only
processing those edges that are currently in the frontier. This takes O(Dm) time, a factor of D more
than when using the traditional BFS variant with O(m) time [19].

2.5.3 Gather-Apply-Scatter Model (GAS). Gather-Apply-Scatter (GAS) [78, 83] is similar to the
vertex-centric approach. It also offers the vertex-centric view on graph algorithms. However, it
additionally splits each iteration into three parts: gather, apply, and scatter. In the gather phase, a
vertex collects information about its neighboring vertices or edges and optionally reduces them
to a single value o. In the apply stage, the state of the vertex is updated based on the previously
computed o, and possibly the properties of the vertex neighbors. Finally, in the scatter phase, each
vertex propagates its new state to its neighbors. This value will then again be collected in the gather
phase of the next iteration. These three phases can be implemented as individual components and
for example connected as a pipeline system or in a network of distributed components.

2.5.4 Bulk-Synchronous Parallel (BSP) Model. Bulk-Synchronous Parallel (BSP) [118] is a model
for designing and analyzing general (i.e., not specifically graph-related) algorithms. Each iteration
in the model is called a superstep. After each superstep, parallel processes are synchronized using
a barrier. Similarly to the GAS model, each iteration is divided into three phases. In first phase, each
process conducts any required local computation. In the next phase, the processes send and receive
messages. Finally, a barrier synchronization guarantees that the next super-step only begins after
all local computations in the current super-step are finished and all messages in this super-step are
exchanged. BSP is frequently used to model and analyze distributed graph algorithms [30, 46, 55].

2.5.5 Asynchronous Execution. While BSP imposes a strict global barrier after each iteration,
in an asynchronous execution model [83], some processes can advance to the next iteration even
before others have finished the previous iteration. In the context of iterative graph algorithms such
as PageRank or Shiloach-Vishkin, this enables some vertices to propagate their associated values
(e.g., their ranks) to their neighbors more often than others, i.e, not just once per iteration. This can
accelerate convergence, but it also requires more complex synchronization mechanisms than in
algorithms that use synchronous models.

1:8 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

2.5.6 MapReduce (MR). MapReduce (MR) [44] is a well-known programming model for pro-
cessing data sets in a parallel, distributed setting. An algorithm based on the MapReduce model is
usually composed of several iterations, and each iteration consists of three phases: map, shuffle,
reduce. In the map phase, a certain map function is applied to every input value and an intermediary
result is generated. Next, in the shuffle phase, compute nodes can redistribute the outcomes of the
map phase. In the final reduce phase, a certain reduction function is performed by each node on
the data received in the shuffle phase. Such MapReduce iterations can be used to expressed some
graph algorithms [37].

2.5.7 Substream-Centric. The substream-centric approach [13] is a paradigm designed to com-
pute semi-streaming graph algorithms efficiently. In substream-centric algorithms, an input stream
of data is divided into substreams, processed independently to increase parallelism while lowering
communication costs. Specifically, the semi-streaming model assumes that the input is a sequence
of edges, which can be accessed only sequentially, as a stream. The main memory (can be randomly
accessed) is assumed to be of size O (n polylog n). Usually, only one pass over the input stream is
allowed, but some algorithms assume a small (usually constant or logarithmic) number of passes.
The approach then divides the incoming stream of edges into substreams, processes each substream
independently, and merges these results to form the final algorithm outcome.

2.6 FPGA Architecture and Terminology

Field-programmable gate arrays (FPGAs) are reconfigurable computing devices that contain a
large number of programmable units that can be used to solve specific computational problems
(see Figure 1). These logic units include lookup tables (LUTs) to implement combinatorial logic,
flip-flops to implement registers, and a programmable interconnect. FPGAs often also provide more
specialized units, such as block RAM (BRAM) for bulk storage, and DSP units for accelerating
common arithmetic operations.

In contrast to application-specific integrated circuits (ASICs), which are only “configured” once
during the manufacturing process, FPGAs can be reconfigured as often as needed. This allows
improving and changing the architecture, applying bug-fixes, or using FPGAs to rapidly proto-
type hardware designs, which can later be manufactured as ASICs. FPGAs additionally allow
reconfiguration on the fly to solve different tasks [58].

While CPUs and GPUs are instruction-driven, FPGA designs are usually data-driven, which
means that an FPGA can process data directly without having to first decode instructions, and does
not access a centralized register file or any cache hierarchy. This is usually more power efficient,
as instruction decoding, register file lookup, and cache lookup account for the majority of power
consumed on instruction-based architectures [61].

The reconfigurability comes with the cost of a lowered frequency, usually about 3-10 times lower
than that of CPUs, and with less specialized components, e.g., floating point operations are often not
native operations, and must be implemented with general purpose logic. Still, carefully engineered
FPGA designs can outperform CPU implementations, by exploiting massive parallelism, typically in
the form of deep pipelines. As long as there are no feedback data dependencies between iterations
of an iterative algorithm, arbitrarily complex computations can be implemented as a pipeline that
can produce one result per cycle. Application-specific instructions that are not a part of a CPU
instruction set, e.g., a novel hash function, can be implemented on an FPGA to deliver a result
every cycle, whereas a CPU implementation would potentially require many CPU instructions.

When FPGA performance models are discussed, we denote the bandwidth between the FPGA
and DRAM as Bpraas- The bandwidth of a single BRAM module is denoted as Bgrans-

Graph Processing on FPGAs: Taxonomy, Survey, Challenges 1:9

PCle Programmable
Host Processor Endpoint Interconnect FPGA

with “_
I | PCIe
FI|p Flops

)) Controller lI/O BRAM DSP Reconﬁgurable Lookup
FPGA is an Endpoint (EP) Blocks Unlts Units ®Logic Blocks Tables
with Direct Memory Access (DMA)

and is attached to the host by PCIe

Host DRAM
Device DRAM

Intel QPI Programmable
Host Processor Endpomt Interconnect FPGA

‘ ‘ ‘ FI|p Flops

Host DRAM
o§
Erz

E%St%ingl 81/0 BRAM DSP Reconﬂgurable Lookup

) . L Blocks Umts Units ®Logic Blocks Tables
FPGA is attached to the host with QPI ayer
to be able to access the host memory (SPL)

Fig. 1. lllustration of an FPGA and of two possible hybrid FPGA-CPU computation systems.

2.6.1 FPGA Programming Languages. The traditional way to program an FPGA is to use a
hardware description language (HDL) such as Verilog, VHDL, or SystemC. These languages describe
the cycle-by-cycle behavior of hardware at the register transfer level (RTL), which can then be
synthesized to the underlying hardware resources and used to configure an FPGA. The low-
level nature of these languages means that they lack many of the high-level concepts that are
found in software programming languages. An alternative is to generate HDL using a high-level
synthesis (HLS) tool, where the hardware description is derived from a more high-level imperative
description. Many HLS tools exist [89], and most are based on C, C++ or OpenCL, using directives
to aid the developer in expressing architectural features, such as pipelines, hardware replication,
and fast memory allocation, in the generated RTL code. Other approaches include the Scala-based
Chisel [5] that offers a more productive environment for RTL development, and the commercial
MaxCompiler [99], which compiles to hardware from a dataflow-oriented Java-based language.

1:10 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

2.6.2 Coarsening of FPGA Features. Recent development has seen increasing specialization
and diversification in FPGA architectures. Intel’s Arria 10 and Stratix 10 families of FPGAs offer
native 32-bit floating point (FP32) units, which greatly reduces the area usage of these operations
(although 64-bit floating point is still costly), and simplifies certain patterns by supporting native
accumulation of FP32 data. Stratix 10 FPGAs also expose “HyperFlex” [63] registers, a new family
of dedicated routing registers aimed at improving frequency results, in order to narrow the gap
to CPU and GPU clock rates. Xilinx UltraScale+ devices add a new class of on-chip RAM called
UltraRAM [123], that expose access ports of similar width to traditional block RAM, but have
larger capacity, allowing large amounts of memory to be stored on the chip without requiring as
many individual RAM blocks to be combined. Finally, the Versal [124] family of Xilinx devices puts
the FPGA on the same chip as an array of “Al engines”, capable of performing more traditional
SIMD-style arithmetic operations, adding to the compute potential in a hybrid ASIC/FPGA fashion.
Common for these trends is a coarsening of components, sacrificing some flexibility for more raw
performance and on-chip memory bandwidth for suitable workloads.

2.6.3 Integration with Hybrid Memory Cubes. A number of surveyed works relies on using the
combination of FPGAs and the Hybrid Memory Cube (HMC) technology [98]. HMC dramatically
improves the bandwidth of DRAM. An HMC unit consists of multiple DRAM dies that are con-
nected using the through-silicon-via (TSV) technology. For example, it offers a 8—10x bandwidth
improvement over DDR4 and is optimized for parallel random memory access [98]. Compared to
traditional DRAM, HMC has much smaller page sizes (16B), which offers more performance for
random memory accesses. Furthermore, HMC implements near memory computing in the form of
locking and read-modify-write operations that are computed directly by the HMC unit instead of
the CPU. It is even possible to atomically modify individual bits without having to first read the
corresponding bytes.

3 TAXONOMY

In this section, we describe how we categorize the surveyed work. We summarize the most relevant
papers in Table 3. We group separately generic graph processing frameworks and specific algorithm
implementations. Each group is sorted chronologically. Selected columns in this table constitute
criteria used to categorize the surveyed FPGA works, see also Figure 2.

The first such criterion is generality, i.e., whether a given FPGA scheme is focused on a partic-
ular graph problem or whether it constitutes a generic framework that facilitates implementing
different graph algorithms. Another criterion is a used graph programming paradigm, model,
or technique. We describe the general paradigms, models, and techniques in detail in § 2.5. How-
ever, certain techniques for graph processing are specific to FPGAs; we cover such techniques
separately in § 4. Note that many implementations are not based on any particular paradigm or
model and they do not use any particular general technique; we denote such works with “None”.

We also distinguish between works that target a single FPGA and ones that scale to multiple
FPGA:s. Finally, we consider the used programming language and the storage location of the
whole processed graph datasets. In the latter, “DRAM”, “SRAM”, or “HMC” indicates that the input
dataset is located in DRAM, SRAM, or HMC, and it is streamed in and out of the FPGA during
processing (i.e., only a part of the input dataset is stored in BRAM at a time). Contrarily, “BRAM”
indicates that the whole dataset is assumed to be located in BRAM. “Hardwired” indicates that the
input dataset is encoded in the FPGA reconfigurable logic.

4 FPGA-SPECIFIC GRAPH PROGRAMMING TECHNIQUES
We discuss separately graph programming techniques that are unique to FPGAs.

Graph Processing on FPGAs: Taxonomy, Survey, Challenges 1:11

Reference Venue Generic Considered Programming Model Used Multi Input + +
(scheme name) Design! Problems? (§ 2.4) or Technique* (§ 2.5) Language FPGAs* Location® n m
Kapre [71] s spreading
(Graphstep) FCCM06 & activation® [52] BSP unsp. 6} BRAM 220k 550k
Weisz [92] , TRW-S*, .
(GraphGen) FCCM’14] CNN* [112] Vertex-Centric unsp. L] DRAM 110k 221k
Kapre [70] ASAP’15 &) SpMV Vertex-Centric, BSP C++ (HLS) &3 BRAM 17k 126k
(GraphSoC) p ertex-Centric,
Dai [40] FPGAT6 O BFS N ¢ DRAM 416M 14B
(FPGP) one unsp. . .
Oguntebi [93] s BFS, SpMV, PR, |
(GraphOps) FPOATI6 %) Verter Cover None Max] (HLS) " BRAM 16M 128M
Zhou [134] FCCM’16 [4] SSSP, WCC, MST Edge-Centric unsp. L) DRAM 4.7M 65.8M
Engelhardt [49] ,) Migen a
(GraVF) FPL’ 16 6} BFS, PR, SSSP, CC Vertex-Centric (HLS) L} BRAM 128k 512k
Dai [41] s
(ForeGraph) FPGA’17 6] PR, BFS, WCC None unsp. 6] DRAM 41.6M 14B

s Hybrid (Vertex- a
Zhou [136] SBAC-PAD’17 O BFS, SSSP and Edge-Centric) unsp. L] DRAM 10M 160M
N BFS, SSSP, CC, Transactional System-
Ma [85] FPGA'17] TC. BC Memory [16, 59] Verilog 6] DRAM 24M 58M
Lee [79] , BFS, PR, CC, o
(ExtraV) FPGA’'17 4] AT* [60] Graph Virtualization ~ C++ (HLS) @ DRAM 124M 1.8B
Zhou [135] CF18 1%, SpMV, PR Edge-Centric, GAS unsp.) DRAM 41.6M 1.4B
Yang [125] report (2018) & BFS, PR, WCC None OpenCL i@ 4.85M 69M
Yao [127] report (2018) & BFS, PR, WCC None unsp. L] BRAM 4.85M 69M
Babb [4] report (1996) @ SSSp None Verilog O Hardwired 512 2051
Dandalis [43] report (1999) @ SSSp None unsp. O Hardwired 2048 32k
Tommiska [116] report (2001) @ SSSp None VHDL L BRAM 64 4096
- Hardwired
Mencer [87] FPL’02 L] Reachability, None PAM- L] (3-state 88 7744
SSSP -Blox Il
buffers)

Bondhugula [27] IPDPS’06 L APSP Dynamic Program. unsp. L DRAM unsp.
Sridharan[110] TENCON’09 @ SSSP None VHDL L] BRAM 64 88
Wang [121] ICFTP’10 L] BFS None SystemC DRAM 65.5k ™
Betkaoui [21] FTP’11 L] GC Vertex-Centric Verilog ¢} DRAM 300k 3M
Jagadeesh [65] report (2011) @ SSSp None VHDL L] Hardwired 128 466
Betkaoui [22] FPL’12 L] APSP Vertex-Centric Verilog ¢} ~ DRAM 38k 72M
Betkaoui[23] ASAP’12 L] BFS Vertex-Centric Verilog ¢} DRAM 16.8M 1.1B
Attia [2] s i .
(CyGraph) IPDPS’14 L} BFS Vertex-Centric VHDL 0 DRAM 8.4M 536M
Ni [91] report (2014) @ BFS None Verilog L] SDIE:I\I}\/‘, 16M 512M
Zhou [132] IPDPS’15 L] SSSP None unsp. L] DRAM 1M unsp.
Zhou [133] ReConFig'15 @ PR Edge-Centric unsp. L DRAM 2.4M 5M
Umuroglu [117] FPL’15 L BFS None Chisel ~DRAM 21M 65M
Lei [80] report (2016) @ SSSp None unsp. L DRAM 239M 58.2M
Zhang [129] FPGA'17 L] BFS MapReduce unsp. L] HMC 33.6M 536.9M
Zhang [130] FPGA’18 L] BFS None unsp. HMC
Kohram [76] FPGA'18 L] BFS None unsp. L) HMC
Besta [13] FPGA'19 L MM Substream-Centric Verilog L] DRAM 48M 117M

Table 3. Summary of the features of selected works sorted by publication date. !Generic Design: this criterion indicates
whether a given scheme provides a graph processing framework that supports more than one graph algorithm () or
whether it focuses on concrete graph algorithm(s) (). 2Considered Problems: this column lists graph problems (or

algorithms) that are explicitly considered in a given work; they are all explained in § 2.4. 3Used Programming Paradigm,
Model, or Technique: this column specifies programming paradigms and models used in each work; they are all discussed

in § 2.5 and § 4. “None” indicates that a given scheme does not use any particular general programming model or paradigm
or technique. “Multi FPGAs: this criterion indicates whether a given scheme scales to multiple FPGAs (€3) or not ().
SInput Location: this column indicates the location of the whole input graph dataset. “DRAM”, “SRAM”, or “HMC”
indicates that it is located in DRAM, SRAM, or HMC, and it is streamed in and out of the FPGA during processing (i.e., only
a part of the input dataset is stored in BRAM at a time). Contrarily, “BRAM” indicates that the whole dataset is assumed
to be located in BRAM. “Hardwired” indicates that the input dataset is encoded in the FPGA reconfigurable logic. n', m*:
these two columns contain the numbers of vertices and edges used in the largest graphs considered in respective works. In
any of the columns, “unsp”” indicates that a given value is not specified.

1:12 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

More details
in§2.4,85

More details

More details
in§ 4

—in§25,8§6
AN
BSP.
MapReduce
&
) o=
MM BC

More

Specific details
to'graphs General Yes No (558p) (JEEN in524,
§5
/
Specific i :
T FPGAs What is the used cclajr%?isﬁljtte Native -
programmin ! a generic grbalph
paradigm, model, problems -
or technique? framework?
Yes —
Graph at are
Does it scale to sche’,’ne the considered -
No multiple FPGAs? on FPGA graph problems?
What is the used Where is the whole Graph-related
programming language? input dataset located? applications
High Low Outside
level level the Froa (SRAM)

.y Hardwired BRAM.

More details

N
N3z More details
in§2.6

Fig. 2. The categorization of the considered domains of graph processing on FPGAs. All the categories are gathered in a
form of a tree. The tree root in the centre represents all graph processing schemes implemented on FPGAs. The children of
the tree root correspond to various general criteria that can be used to categorize FPGA graph processing schemes, e.g.,

whether or not a given FPGA scheme constitutes a generic graph processing framework or whether it is an implementation
of a particular algorithm.

4.1 Direct Hardware Mapping

One of the earliest approaches in FPGA graph processing was to to map a graph completely onto
the FPGA using logical units and wires to physically represent every single vertex and edge. The
obvious limitation of all these approaches is that the size of input graphs is limited by the amount
of the FPGA reconfigurable resources.

In 1996, Babb et al. [4] introduced dynamic computation structures, a technique that compiles a
given graph problem to Verilog code and then maps it to an FPGA. Each vertex of the input graph is
physically represented on the FPGA. This system was then able to solve the Bellman-Ford algorithm
to find all shortest paths from a specified source vertex. The approach requires to reconfigure the
FPGA whenever the input graph changes.

Later, Mencer and Huelsbergen [62, 87] presented a more flexible design where a graph topology
can be changed on the FPGA using tri-state buffers to represent entries of the adjacency matrix.

Graph Processing on FPGAs: Taxonomy, Survey, Challenges 1:13

This, however, still requires O(n) space on the chip. Simple graph problems, such as reachability of
some vertex b from another vertex a, can be solved by propagating a signal through a and checking
whether it reaches b. Other problems, such as SSSP or CC, can be solved in a similar manner with
slightly more complex circuits.

Finally, Dandalis et al. [43] represent vertices as processing elements but store edges in the main
memory so that they can be loaded dynamically to represent same-size graphs with different edge
sets without having to reconfigure the FPGA. Jagadeesh et al. [65] implement a similar design
but propose changes to the design of the processing elements to reduce the number of cycles per
iteration. Both approaches can compute arbitrary graphs as long as the FPGA has been configured
with enough processing elements.

4.2 Graph Virtualization

Graph Virtualization is a technique proposed by Lee et al. [79], where the program running on
the host processor is provided with the illusion that the input graph resides in the main memory
and is stored using some simple format such as Adjacency Array, while in reality the graph is
stored in a more complex, possibly multi-level and compressed form on a storage managed by
an accelerator such as FPGA. The motivation is to use the accelerator to offload tasks related
with graph decompression and filtering from the host processor. Additionally, graph virtualization
enables the accelerator to apply various optimizations and functionalities to the data, for example
multi-versioning, without affecting processor functions or programmability. This technique can
be used together with any accelerator, not only an FPGA. However, as the proposed design is
implemented on an FPGA system, we include it in this survey.

5 SPECIFIC GRAPH ALGORITHMS ON FPGA

We now discuss selected hardware implementations of individual graph algorithms. Such schemes
form one significant part of research works dedicated to graph processing on FPGAs.

5.1 BFS

Works on BFS constitute the largest fraction of graph processing schemes on FPGAs. We now
describe selected works, focusing on explaining key ideas and summarizing important outcomes.

5.1.1 Using Hybrid CPU-FPGA Processing. One idea for efficient BFS traversals is to combine
the different compute characteristics of the FPGA and the CPU. Specifically, Umuroglu et al. [117]
present an efficient BFS implementation on a CPU-FPGA hybrid system. The paper focuses especially
on small-world graphs [122] which have a very low diameter. In such graphs, the size of the frontier
exhibits a specific pattern throughout the BES algorithm. The frontier remains fairly small in the
first several iterations, but then grows quickly in the next steps, to become small again at the end
of the traversal [7]. As the authors estimate, the frontier contains on average about 75% of all the
vertices in the considered graphs during the fourth iteration. The authors use this observation while
splitting the work between the CPU and the FPGA: small frontiers do not offer much parallelism
but can be efficiently computed on the CPU while large frontiers can be parallelized on the FPGA.
The implementation described in the paper thus computes the first and last steps on the CPU and
uses the FPGA only to compute the steps with the large frontiers. The implemented BFS is expressed
using the language of linear algebra (i.e., frontier expansion is implemented as multiplying the
adjacency matrix and a vector that stores the current frontier, see § 2.2 for more details).

Another idea in the work by Umuroglu et al. [117] is to read the whole frontier array sequentially.
In BFS, an important operation is to verify whether a certain vertex is in the frontier. Instead of
querying only for those vertices, the authors propose to read the whole frontier array into BRAM and

1:14 M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun, T. Hoefler

thus remove the need for random memory accesses. Because of the small-world graph assumption,
we know that the frontiers will contain a significant amount of vertices.

Various Insights The authors name three important ways for using a large portion of the
available DRAM bandwidth: A high rate of requests to make the latency of individual requests less
significant, using large bursts of requests, and a sequential access pattern to increase the number of
row buffer hits [117]. The authors argue that it is more efficient to treat sparse bit vectors as dense
(see § 2.3.2 for an explanation of sparse and dense structures) and read them sequentially instead of
accessing (most often randomly) only the parts that are know to contain the required data.

Remarks on Evaluation As the vector that is the result of the MV multiplication (i.e., the result
of the frontier expansion) is stored in BRAM, the BRAM poses a hard limit on the size of graphs
that can be computed using this approach. In fact, the authors were unable to use graphs with more
than 2 million nodes and 65 million edges due to the limited on-chip BRAM size. The size of the
result vector is n words; the paper reports that 82% of the BRAM is used for the result vector.

5.1.2 Using Hybrid Memory Cubes (HMC). The key idea due to Zhang et al. [129] is to use
Hybrid Memory Cubes (HMC) to implement an efficient BFS implementation on FPGAs (we discuss
HMC in more detail in § 2.6.3 and § 7.1.1). The authors build an analytical performance model of the
HMC memory access latencies that allows them to analyze performance bottlenecks. HMC allows
to select the size of the transferred data payload to be anything between 16 bytes and 128 bytes.
The analysis shows that, depending on data locality [114], either small or large read granularity is
more efficient. For example, reading a list of neighbors in a BFS traversal has better data locality
than updating the parent of a single vertex. Thus, the main insight is that different payload sizes
for accessing different data structures in BFS can be used to optimize performance.

In contrast to Umuroglu et al. [117], the authors do not use a hybrid FPGA-CPU setting and
run the whole BFS on the FPGA, including