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Abstract—Expensive data movement makes the optimal target-
specific selection of data-locality transformations essential. Loop
fusion and tiling are the most important data-locality trans-
formations. Their optimal selection is hard since good tile
size choices inherently depend on the fusion choices and vice
versa. Existing approaches avoid this difficulty by optimizing
independent analytical models or by reverting to heuristics.
Absinthe formulates the first unified linear optimization problem
to derive single shot fusion and tile size decisions for stencil codes.
At the core of our optimization problem, we place a learned
analytic performance model that captures the characteristics of
the target system. The tuned application kernels demonstrate
excellent performance within 10% of exhaustively auto-tuned
versions and up to 74% faster than the results of independent
optimization with max fusion heuristic and Absinthe tile size
selection. While the full search space is non-linear, bounding
it to relevant solutions enables the efficient exploration of the
exponential search space using linear solvers. As a result, the
tuning of our application kernels takes less than one minute. Our
approach thus establishes the foundations for next-generation
compilers, which exploit empirical information to guide target-
specific code transformations.

Index Terms—stencils, performance model, data-locality

I. INTRODUCTION

The cost of data movement in terms of energy and time has

long exceeded the cost of computation. Thus, data locality

recently became the most important optimization target for

performance engineers [1]. Today, most programmers either

rely on the compilation toolchain or manually optimize data

locality by tiling and fusing loops. Manual loop optimizations

are tedious and require a high porting effort to exploit different

architectures efficiently because tiling and fusion parameters

need to be adjusted for each target system. Various frameworks

such as Halide [2] and Polymage [3] focus their tuning on

this parameter selection, but they either apply heuristics or

optimize tiling and fusion separately to control the exponen-

tial search space. However, fusion and tiling are inherently

linked—for optimizing one, one needs to assume a specific

configuration for the other. For example, the optimal tile size

depends on the memory footprint of the loop, which changes

with fusion. This missing modularity of the problem requires
us to consider tiling and fusion in tandem.

Stencil computations on regular grids are ubiquitous in

scientific computing applications such as climate modeling [4],

seismic imaging [5], and electromagnetic simulations [6].
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Fig. 1: Absinthe optimization example

In this work, we use the COSMO atmospheric model [4],

which is used in operational weather forecasting in most of

Europe [7] as well as in large-scale climate modeling [8],

as a motivating example. The 300′000 lines of code contain

more than 16′000 loops, most of which implement single

stencils. These stencils logically form complex producer-

consumer relationships, called stencil programs [9]. We select

three representative COSMO stencil programs to evaluate the

effectiveness of our approach. Due to the very low arithmetic

intensity of every single stencil, tiling and fusion are crucial

for achieving good performance for stencil programs.

We show an example in Fig. 1—COSMO’s fastwaves

stencil program which implements parts of the sound wave

forward integration. The directed graphs show the data-flow

(edges) between the stencils (nodes) of the fastwaves program.

Our optimization framework, Absinthe1, uses an automatically

learned performance model to guide the program optimization.

The figure plots the model prediction versus the measured

execution time for the tile size (annotated) and fusion (shaded

shapes) choices of Absinthe compared to auto-tuning and an

1https://github.com/spcl/absinthe.git
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Fig. 2: Absinthe architecture overview

unfused tiled implementation.

Absinthe consists of three main pieces: (1) a model learner,

(2) an optimizer, and (3) a code generator. The model learner
generates a performance model specific to each target architec-

ture. The optimizer derives an integer linear program encoding

the structure of the stencil program and the performance model

to tune tiling and fusion together. The code generator then

emits an implementation with the optimal tiling and fusion

parameters returned by the integer linear programming solver.

In this way, Absinthe combines automated model learning with

integer linear programming to control the exponential search

space and to automatically find the best configuration for each

target architecture.

In summary, we make the following key contributions:

• A linear formulation of parametric tiling for bound tile

sizes (assumed to be non-linear in general).

• A linear performance model that learns the target sys-

tem characteristics and enables the use of integer linear

programming to explore the search space.

• A single holistic optimization problem which applies the

linear performance model to derive optimal fusion and

tile size selection choices for stencil codes.

II. BACKGROUND

The execution of stencils in succession provides plenty of

opportunities for data locality improvements.

A. Architecture Overview

Absinthe lowers stencil programs written in a high-level

domain-specific language (DSL) to efficient C++ code. An

automatically learned performance model drives the selection

of target system specific code transformations. Fig. 2 shows

the interplay of the Absinthe components.

The model learner (1) runs once for every target system

to learn the model parameters. The optimizer (2) combines

the model parameters with the memory access patterns of

the stencil program to instantiate a target-specific performance

model. An integer linear programming (ILP) solver searches

the optimal data-locality transformations with respect to the

performance model. The code generator (2) applies the optimal

data-locality transformations to the high-level stencil program

representation and generates tuned C++ code.

1 for(int x=xbeg; x<=xend; ++x)
2 for(int y=ybeg; y<=yend; ++y)
3 for(int z=zbeg; z<=zend; ++z)
4 s0(x,y,z) = 0.5 * (i0(x+1,y,z) + i0(x,y,z));
5 for(int x=xbeg; x<=xend; ++x)
6 for(int y=ybeg; y<=yend; ++y)
7 for(int z=zbeg; z<=zend; ++z)
8 s1(x,y,z) = i1(x,y,z) * (s0(x,y+1,z) - s0(x,y-1,z));

Fig. 3: Example stencil sequence with length N = 2

Absinthe targets three-dimensional stencil programs and

optimizes them to utilize all processors of the target system,

assuming exclusive system access. Our implementation has the

following limitations: 1) we support only three-dimensional

arrays, 2) we do not optimize the boundary conditions, and 3)

we tile the codes only for one memory hierarchy level.

B. Stencil Sequences

A stencil is an element-wise computation with a position

independent access pattern. Every stencil evaluation accesses

the input arrays at fixed offsets relative to the updated output

array element. We assume that every stencil writes a single

array. We apply stencils to all array elements except for a

constant width halo at the array boundary which prevents out-

of-bounds accesses.

A stencil sequence is a program formed of several subse-

quent stencil applications. Fig. 3 shows an example stencil

sequence with length N = 2. The short example sequence

allows us to illustrate our approach with less complexity

compared to the fastwaves kernel introduced in Fig. 1.

C. Data-Locality Transformations

Absinthe combines rectangular tiling with redundant com-

putation at the tile boundaries to satisfy the data dependencies

of fused stencils. This overlapped tiling [10] enables major

performance improvements. The tuned fastwaves kernel shown

by Fig. 1 executes 1.5× faster compared to the unfused tiled

implementation variant.

Loop tiling decomposes the domain into hyper-rectangular

tiles of equal size. To increase the data-locality, we evaluate the

stencil on the entire tile before proceeding with the next one.

We thus introduce an additional outermost loop that iterates

over all tiles. To support arbitrary domain sizes, we cut the

tiles at the domain boundary.

Loop fusion replaces the tile loops of consecutive stencils

with a single tile loop that evaluates one stencil after another

before proceeding with the next tile. After fusion, the data

dependencies of producer-consumer stencils cross the tile

boundaries. To enable the parallel tile execution, we extend

the loop bounds of the producer stencils to perform redundant

computation at the tile boundaries which satisfies all data

dependencies locally.

The combination of fusion and tiling effectively increases

the spatial and temporal locality for stencils with overlapping

working sets. The code generator introduces one tile loop for

every group of fused stencils and allocates temporary storage
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TABLE I: Important constants and variables

constants
N number of stencils in the stencil sequence
Dx, Dy , Dz domain sizes
Hx, Hy , Hz halo widths
T number of processors
C cache capacity

P f , Bf fast memory peel & body parameters

P b, Bb slow memory peel & body base parameters
P v , Bv slow memory peel & body variable parameters

variables
gi group index
nx
i , n

y
i , n

z
i tile counts

pfi , b
f
i fast memory peel & body cost

pbi , b
b
i slow memory peel & body base cost

pvi , b
v
i slow memory peel & body variable cost

ex+i , ey+i , ez+i evaluation boundary widths (positive axis direction)

ex−i , ey−i , ez−i evaluation boundary widths (negative axis direction)

target system
STENCILS = {
  S0 : 
    0.5 * (
    i0(x+1,y,z) + 
    i0(x,y,z))
  S1 : 
    i1(x,y,z) * (
    s0(x,y+1,z) +
    s0(x,y-1,z))
}

stencil sequence

performance model
fast memory slow memory

data-locality transformations
loop fusion loop tiling

parameters

Ai, Bi
x, Bi

y, Bi
z

N, Dx, Dy, Dz, T, C 

Pf, Bf, Pb, Bb, Pv, Bv
learn

analyze

min t
ILP

Fig. 4: Absinthe ILP parameters and components

to buffer intra-tile data dependencies with minimal memory

footprint.

III. MODELING

The optimizer automatically instantiates an integer linear

program (ILP) to find good data-locality transformations.

Fig. 4 shows the main components of the ILP: the parameters
component captures the stencil sequence and target system

properties that provide the basis for the optimization, the data-
locality transformations component defines the optimization

variables that span the space of possible transformations, and

the performance model component estimates the execution

time for the selected code transformations. At optimization

time, the ILP solver searches the code transformations with

minimal estimated execution time.

We present the ILP for three-dimensional stencils, but the

formulation generalizes to stencils with different dimension-

ality. If not mentioned otherwise, the variables are positive

and integer-valued, while lowercase and uppercase identifiers

distinguish optimization variables and constants, respectively.

Table I lists important constants and variables.

A. Stencil Sequences

The optimizer requires an analysis of the stencil access

patterns to instantiate the ILP shown by Fig. 4. The access

patterns provide the basis to compute the data-flow and to

estimate the performance of the stencil sequence.

We use positive indexes to number the stencils in execution

order and negative indexes to identify the input arrays. For

example, the indexes [0, 1] refer to the stencils [s0, s1] and the

indexes [−1,−2] to the input arrays [i0, i1] of the example

stencil sequence shown by Fig. 3. The stencil indexes also

map one-to-one to the output arrays since every stencil writes

precisely one output. The resulting index space thus uniquely

identifies the input and output arrays of the stencil sequence.

To specify the data access patterns, we define for every

stencil i the access set Ai holding (index, offset) tuples that

define the array and the three-dimensional relative offset of

every input element access. The access sets

A0 = {(−1, (1, 0, 0)), (−1, (0, 0, 0))},
A1 = {(−2, (0, 0, 0)), (0, (0, 1, 0)), (0, (0,−1, 0))}

include all accesses of the example stencils. We also compute

minimal bounding boxes that contain all access offsets. To

represent the bounding boxes, we define for every stencil i
and dimension d the bounds set Bd

i holding (index, range)

tuples that specify the array and the minimal and maximal

access offset along the dimension. The bounds sets

Bx
0 = {(−1, (0, 1))}, By

1 = {(−2, (0, 0)), (0, (−1, 1))}
contain all accesses of the example stencils along the selected

dimensions.

To execute the stencil sequence, we define for every di-

mension d the constant domain size Dd and the constant halo

width Hd along the dimension. The domain sizes determine

the stencil loop bounds, while the halo sizes together with the

domain sizes specify the array allocation size. For example,

we may execute the example stencils on the domain

Dx = 64, Dy = 64, Dz = 60

and select the halo widths

Hx = 1, Hy = 1, Hz = 0

to accommodate the transitive stencil access offsets, which

results in the array allocation size 66× 66× 60.

B. Data-Locality Transformations

The optimizer also defines the optimization variables that

span the space of possible data-locality transformations and

introduces constraints to exclude solutions that suffer from

load imbalance or exceed the cache capacity.

To model loop tiling, we select for every stencil i ∈ [0, N)
and every dimension d the tile count nd

i along the dimension

from the range
[
1, Dd

]
. For example, the tile counts

nx
0 = 2, ny

0 = 2, nz
0 = 2

split the domain of the first stencil in the example stencil

sequence into two tiles along every dimension.

To model loop fusion, we select for every stencil i ∈ [0, N)
the group index gi and fuse stencils with the same group index.
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We set the group index of the first stencil to zero and increment

the group index with every additional group along the stencil

sequence. For every stencil, we thus have the choice to retain

or increment the group index of the preceding stencil, which

spans an exponential search space in the number of stencils.

For example, the group index tuples

(g0, g1) ∈ {(0, 0), (0, 1)}
enumerate all possible group assignments for the example

stencil sequence. The group indexes g0 = 0, g1 = 0 assign

the stencils to the same group to model fusion while the

group indexes g0 = 0, g1 = 1 assign the stencils to different

groups that execute consecutively. To quantify the redundant
computation, we also extend for every stencil i ∈ [0, N)
and for every dimension d the tile size with the evaluation

boundary widths ed+i and ed−i along both directions. For

example, the evaluation boundary widths

ey+0 = 1, ey−0 = 1

extend the tile size of the first stencil to satisfy all data

dependencies of the example stencil sequence locally. We

define the tile sizes for every stencil, but the stencils of each

group share the same tile loop and tile size. We thus enforce

tile count equality for succeeding stencils with the same group

index.

To guarantee data-locality, we exclude tile sizes that exceed

the cache capacity C (L2 cache). To estimate the cache utiliza-

tion, we multiply for every stencil group the tile size with the

number of accessed arrays. This approximation optimistically

models a fully associative cache with a least recently used

cache replacement policy and does not consider the accesses

at the tile boundaries. We thus enforce the cache utilization for

a single tile to be lower than one-third of the cache capacity.

This choice compensates for our optimistic cache modeling

and ensures that not only the current but also the next and

the previous tile executed by the same processor mostly fit

the cache. As a result, the data-locality improves since the

overlapping boundaries of consecutive tiles stay in cache.

To guarantee parallel efficiency, we enforce a total number

of tiles within 5% of an integer multiple of the number of

processors T and for every dimension a tile count within 2%
of an integer multiple of the domain size.

C. Performance Model

The optimizer finally instantiates the performance model

based on the stencil sequence and target system parameters

shown by Fig. 4.

The performance model distinguishes two cost components:

(1) the peel cost models the latency and (2) the body cost
models the throughput of the innermost loop executions. In

other words, the peel cost accounts for loop startup overheads

– examples are the over fetch at the loop boundaries or the

execution of scalar peel loops – while the body cost models the

steady-state of the loop execution. For both components, we

model the memory accesses for two memory hierarchy levels:

(1) the fast memory (L2 cache) and (2) the slow memory (L3

nx=ny=2 
Dx=Dy=4 

DxDy

body domain
nxny

peel domain

nxDy

DxnyDynx

y

x

y

x

y

x
Fig. 5: Illustration of the peel and body domain computation

for domain size 8×8 split into 2×2 tiles with boundary width

one along the positive axis directions.

cache or DDR memory). For every data element, we assume

the slow memory handles the first and the fast memory all

subsequent accesses during the tile execution. To estimate the

execution time, the performance model multiplies the number

of memory accesses with the learned model parameters.

The loop startup overheads make long tiles along the

innermost loop dimension more efficient. To model this effect,

we distinguish the peel cost proportional to the number of

innermost loop executions (peel domain) and the body cost
proportional to the number of innermost loop iterations (body

domain). This separation allows us to assign a higher cost to

memory accesses executed during the loop startup. The two

cost components and the goal to employ efficient integer linear

programming solvers result in linear cost functions of the form

Px+By that sum the peel cost Px and the body cost By. The

variables x and y denote the number of memory accesses for

the peel and body domains, respectively. The learned model

parameters P and B convert the memory accesses to execution

times. Sec. III-D details how the model learner determines the

model parameters.

The performance model combines multiple cost functions

to estimate the stencil sequence execution time. To define

the cost functions, we next introduce the peel and body

functions that compute the weighted size of the peel and body

domains, respectively. Fig. 5 shows the computation of the

peel domain (left) and the body domain (right) for a simplified

two-dimensional domain (middle) with all weights set to one.

The peel domain counts the blue points (squares) while the

body domain counts all points (squares and circles). The peel

and body functions extend this computation with additional

terms and factors to model our three-dimensional domain and

parametric weights.

a) peel function: The peel cost is proportional to the

number of innermost loop executions. Without loss of gen-

erality, we assume the innermost loops execute along the

x-dimension, which means the number of innermost loop

executions corresponds to the size of the tiles projected to

the yz-plane.

The product DyDz of the domain sizes is equal to the sum

of the tile domains and the products Dzny
i and Dynz

i of the

tile counts with the perpendicular domain size approximate

the tile boundaries. To sum the tiles along the innermost loop
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dimension, we multiply the terms with the tile count along the

x-dimension. This approximation is exact except for the tile

corners. To evaluate the peel cost, we define for every stencil

i ∈ [0, N) the peel function

fp
i (w,w

y, wz) = nx
i (D

yDzw +Dzny
iw

y +Dynz
iw

z)

which scales the inner domain and the boundary terms with

the inner weight w and the boundary weights wy and wz ,

respectively. For example, we set the inner weight to one and

the boundary weights to the evaluation boundary widths to

count the innermost loop executions.

b) body function: The body cost is proportional to the

number of innermost loop iterations scaled with cost function-

specific weights. The number of innermost loop iterations

is equal to the sum of the tile volumes. To compute the

volume of the overlapping tiles, we add the product DxDyDz

of the domain sizes to the tile counts multiplied with the

perpendicular domain sizes. This approximation again includes

the tile domains and the tile boundaries without the tile

corners. To evaluate the body cost, we define for every stencil

i ∈ [0, N) the body function

f b
i (w,w

x, wy, wz) = DxDyDzw+DyDznx
i w

x+

DxDzny
iw

y+DxDynz
iw

z

which scales the inner domain and the boundary terms with

the inner weight w and the boundary weights wx, wy , and

wz , respectively. For example, we set the inner weight to one

and the boundary weights to the evaluation boundary widths

to count the innermost loop iterations.

The peel and body functions next allow us to define the cost

functions for the two memory hierarchy levels.

c) fast memory: The fast memory model counts the

memory accesses to estimate the stencil execution time. We

assume that every evaluation of the stencil i loads the entire

access set Ai and stores the result. The stencil i thus performs

1+|Ai| memory accesses per evaluation. To count the memory

accesses, we set for every stencil i ∈ [0, N) the weight

ci = 1 + |Ai|
to the number of memory accesses per stencil evaluation and

for every dimension d the boundary weight

cdi = (1 + |Ai|)(ed−i + ed+i )

to the number of memory accesses per stencil evaluation

scaled with the evaluation boundary widths. The multiplication

reflects that the stencils are evaluated at every evaluation

boundary line. We then set for every stencil i ∈ [0, N) the

peel cost pfi and the body cost bfi of the fast memory model

to the products

pfi = P ffp
i (ci, c

y
i , c

z
i ), bfi = Bff b

i (ci, c
x
i , c

y
i , c

z
i )

which evaluate the peel and body functions to obtain the

number of memory accesses for the peel and body domains,

respectively. The learned model parameters P f and Bf con-

vert the memory accesses to execution times.

d) slow memory: The slow memory model determines

the communication volume to estimate the execution time. We

observe that the memory throughput improves with the number

of parallel access streams. To model this behavior, we sum two

cost functions that estimate the base cost and the variable
cost with respect to the number of access streams. We assume

that every stencil group loads and stores an array only once.

Repeated accesses of the same array hit the fast memory and

are not relevant for the slow memory model.

We compute the slow memory loads and stores based on

the group indexes. A stencil only loads an array from slow

memory if the group index of the stencil that accessed the

array last differs. Otherwise, the array was already loaded to

the fast memory. A stencil only stores an array to slow memory

if the group index of the last stencil that accesses the array

differs. Otherwise, the array is not used outside of the stencil

group, and storing to slow memory is not necessary.

To estimate the base cost, we set for every stencil i ∈ [0, N)
the weight mi to one if the stencil loads or stores at least one

array and to zero otherwise. We also set for every dimension

d the boundary weight

md
i = mi(e

d−
i + ed+i )

to the weight times the evaluation boundary widths. We then

set for every stencil i ∈ [0, N) the peel cost pbi and the body

cost bbi of the base cost to the products

pbi = P bfp
i (mi,m

y
i ,m

z
i ), bbi = Bbf b

i (mi,m
x
i ,m

y
i ,m

z
i )

which evaluate the peel and body functions to obtain the

number of stencil evaluations that access at least one array

for the peel and body domains, respectively. The learned

model parameters P b and Bb convert the stencil evaluations

to execution times.

To estimate the variable cost, we set for every stencil

i ∈ [0, N) the weight si to the number of accessed arrays and

for every dimension d the boundary weights sdi to the sum

of the array access boundary widths along the dimension. We

consider only arrays and boundary lines that have not been

accessed by a preceding stencil of the same stencil group.

To compute access boundary widths, we extend for every

data dependency (j, (B−, B+)) ∈ Bd
i the evaluation boundary

widths with the access bounds B− and B+. We then set for

every stencil i ∈ [0, N) the peel cost pvi and the body cost bvi
of the variable cost to the products

pvi = P vfp
i (si, s

y
i , s

z
i ), bvi = Bvf b

i (si, s
x
i , s

y
i , s

z
i )

which evaluate the peel and body functions to obtain the

number of access streams for the peel and body domains,

respectively. The learned model parameters P v and Bv convert

the access streams to execution times.

The slow memory model finally sums the base cost and the

variable cost to estimate the execution time.

To estimate the overall stencil execution time, we assume

that the fast memory and the slow memory accesses overlap.

We thus compute for every stencil the maximum peel cost and
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the maximum body cost of the two memory hierarchy levels.

The sum
∑N−1

i=0 max(pfi , p
b
i + pvi ) + max(bfi , b

b
i + bvi )

accumulates the individual stencil execution times to obtain

the execution time of the entire stencil sequence. The term
∑N−1

i=0 2 · 3(Bb +Bv)nx
i n

y
i n

z
i

emulates the slow memory access cost to load the two pre-

computed tile loop bounds for all three dimensions to account

for the tile execution overheads. We include this term in the

estimated execution time to favor implementation variants with

fewer tiles. Together, the estimated execution time and the tile

execution overheads define the objective function of the integer

linear program.

D. Learning the Performance Model

The model learner adapts the performance model param-

eters to the performance characteristics of the target system.

To learn the parameters, we implemented training stencils that

either stress the slow or the fast memory and measure their

execution time for different tile sizes. We then compute the

model parameters using least absolute deviations (LAD) [11]

regression, which compared to least squares regression has

better outlier robustness.

As the performance depends on the tile shape, we bench-

mark the training stencils with tile sizes ranging from 10 to

80 elements along the x-dimension and from 1 to 55 elements

along the other dimensions. We exclude tiles with a volume

below 500 or above 2000 elements to ensure that the tiles fit

the fast memory (L2 cache). In total, we run 103 tile size

configurations.

When learning the fast memory model, the fast memory

accesses have to dominate the execution times of the training

stencils. We used three training stencils that access 12, 16, and

20 array positions. We always connect nine identical stencils

that access the same input array to one training sequence. The

repeated accesses of the same input array guarantee that the

fast memory accesses dominate the execution time.

We benchmark the three training sequences for all tile

size configurations. For every run r ∈ [0, R), we collect the

measured execution time tr and compute the number of fast

memory accesses xr and yr for the peel and body domain,

respectively. The LAD regression

(P f , Bf ) = argmin
(P,B)∈R2

∑
r∈[0,R) |(Pxr +Byr)− tr|

then selects the fast memory model parameters P f and Bf

that minimize the L1-norm of the prediction error.

When learning the slow memory model, the slow memory

accesses have to dominate the execution times. We used nine

training stencils that access 1, 2, or 3 input arrays with access

boundary width 0, 1, or 2. The stencils access the input arrays

at three diagonal offsets to avoid unnecessary fast memory

accesses. We always connect nine identical stencils that access

different input and output arrays to one training sequence. The

many loaded and stored arrays guarantee that the slow memory

accesses dominate the execution time.

We benchmark the nine training sequences for all tile size

configurations. For every run r ∈ [0, R), we collect the mea-

sured execution time tr. To learn the base cost, we compute

the number of stencil evaluations xr and yr that perform slow

memory accesses for the peel and body domain, respectively.

To learn the variable cost, we compute the number of slow

memory accesses ur and vr for the peel and body domain,

respectively. The LAD regression

(P b, Bb, P v, Bv) = argmin
(P ′,B′,P ′′,B′′)∈R4

∑
r∈[0,R) |(P ′xr+

B′yr + P ′′ur+B′′vr)− tr|
then selects the slow memory model parameters P b, Bb, P v ,

and Bv that minimize the L1-norm of the prediction error.

All training sequences are synthetic and differ from the

application kernels tuned in Sec. V-D.

IV. OPTIMIZATION

The number of possible data-locality transformations de-

fined in Sec. III-B makes the manual tuning of stencil pro-
grams difficult. To automate the process, we could exhaus-

tively search for the optimal data-locality transformations

according to the performance model introduced in Sec. III-C.

However, for stencil sequences of length N the search space

contains O(2NNDxDyDz) implementation variants which

decompose into 2N fusion choices multiplied with up to N
stencil groups and DxDyDz tile size choices. This large

search space motivates advanced optimization methods.

To explore the search space, we rely on the well established

mixed-integer linear programming (MILP) approach, which

finds or approximates the optimal solution within some pre-

defined objective function gap. The optimizer translates the

performance model and the space of data-locality transforma-

tions to an MILP that defines the optimization problem. We

next detail the automatic translation of the performance model

to linear constraints.

A. Linearizing Multiplications

The performance model multiplies the tile count variables

with other variables. Linear programs cannot directly express

the product of two integer variables. An implementation

trick [12] nevertheless allows us to multiply two variables x
and y with known upper bounds X and Y .

We first observe that the product of the binary variable b
and the variable x with known upper bound X translates to

three constraints. The constraint 0 ≤ p ≤ x limits the product

p to the range [0, x], while the constraints

p−Xb ≤ 0 and p− x−Xb ≥ −X
force the product to zero if b is zero and to x otherwise.

To express the product of two variables x and y with the

known upper bounds X and Y , we next encode the variable

y with the sum

y =
∑�log2(Y )�

i=0 2iyi
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where the binary variables yi represent the digits of y. Then

the product p = xy corresponds to the sum

p =
∑�log2(Y )�

i=0 2ixyi

of the binary products xyi scaled with the power of two

associated with the respective digit. All binary products are

translated to the constraints introduced before.

The optimizer implements the performance model by intro-

ducing binary representations for all tile count variables and

lowers the products as shown above. This solution works since

we know that for every dimension d the range [1, Dd] limits

the tile count variables.

B. Modeling Stencil Groups

The number of stencil groups is an optimization variable

not known during the generation of the optimization problem.

Allocating one variable per stencil group to store group prop-

erties such as the tile count is thus not possible. Instead, we

model stencil group properties with the help of stencil specific

variables. At optimization time, the group index variables of

Sec. III-B allow us to compute stencil group properties and to

assign them to all stencil specific variables of the group.

The group indexes increase monotonically along the stencil

sequence. The constraint g0 = 0 sets the group index of the

first stencil to zero. To limit the remaining group indexes, we

define for every stencil i ∈ [0, N − 1) the constraint

0 ≤ gi+1 − gi ≤ 1,

which sets the group index difference of succeeding stencils

to zero or one for fusion and no fusion, respectively.

With the help of the group indexes, we define constraints

that apply to the stencil groups. For example, the tile counts

have to be equal within the stencil group. To enforce equality,

we define for every stencil i ∈ [0, N − 1) and for every

dimension d the constraints

nd
i+1 − nd

i +Dd(gi+1 − gi) ≥ 0,

nd
i+1 − nd

i −Dd(gi+1 − gi) ≤ 0

which limit the tile count difference to zero if the stencils have

the same group index. Otherwise, the group index difference

gi+1−gi is positive since the indexes increase along the stencil

sequence. Then the group index difference multiplied with

the upper bound Dd for the tile count difference nd
i+1 − nd

i

disables the constraints for all possible tile count assignments.

The upper bound follows from the observation that the tile

counts range from one to the domain size Dd.

The optimizer uses the group index variables to model the

tile counts, the cache utilization, and the number of slow

memory accesses.

V. EVALUATION

To validate our approach, we learn the performance model

for three target systems and compare application kernels tuned

with Absinthe to heuristically tuned, hand-tuned, and auto-

tuned implementation variants.

1 STENCILS = {
2 "s0":"auto res = 0.5*(i0(x+1,y,z)+i0(x,y,z));",
3 "s1":"auto res = i1(x,y,z)*(s0(x,y+1,z)+s0(x,y-1,z));"}

Fig. 6: Absinthe version of the example stencil sequence

1 #pragma omp parallel for schedule(static)
2 for(int idx = 0; idx < 1 * 3 * 12; ++idx) {
3 // views of the input and output arrays
4 loop_info l = _tiles_group0[idx];
5 array_view_3d i1(&__i1(l.xbeg, l.ybeg, l.zbeg));
6 array_view_3d i0(&__i0(l.xbeg, l.ybeg, l.zbeg));
7 array_view_3d s1(&__s1(l.xbeg, l.ybeg, l.zbeg));
8 // stack allocated temporary arrays
9 tarray0_3d ___s0;

10 tarray0_view_3d s0(&___s0(HX, HY, HZ));
11
12 { // apply s0 stencil
13 int xbeg = _loops_s0[idx].xbeg;
14 int xend = _loops_s0[idx].xend;
15 int ybeg = _loops_s0[idx] ybeg;
16 int yend = _loops_s0[idx].yend;
17 int zbeg = _loops_s0[idx].zbeg;
18 int zend = _loops_s0[idx].zend;
19 for(int z = zbeg; z < zend; ++z)
20 for(int y = ybeg; y < yend; ++y)
21 #pragma omp simd
22 for(int x = xbeg; x < xend; ++x) {
23 auto res = 0.5 (i0(x+1,y,z) + i0(x,y,z));
24 s0(x,y,z) = res;
25 }}
26
27 { // apply s1 stencil
28 int xbeg = _loops_s1[idx].xbeg;
29 int xend = _loops_s1[idx].xend;
30 int ybeg = _loops_s1[idx] ybeg;
31 int yend = _loops_s1[idx].yend;
32 int zbeg = _loops_s1[idx].zbeg;
33 int zend = _loops_s1[idx].zend;
34 for(int z = zbeg; z < zend; ++z)
35 for(int y = ybeg; y < yend; ++y)
36 #pragma omp simd
37 for(int x = xbeg; x < xend; ++x) {
38 auto res = i1(x,y,z) * (s0(x,y+1,z) + s0(x,y-1,z));
39 s1(x,y,z) = res;
40 }}
41 }

Fig. 7: Optimized code for the example stencil sequence

A. Setup & Methodology

The target systems feature Xeon E5-2695 v4, Xeon Phi

7210, and Power8NVL sockets. We configure the Xeon Phi

sockets with two NUMA domains, each of them with 32
processors and three DDR channels, and run the experiments

on one of the two NUMA domains. We optimize the linear

programs with CPLEX 12.6.3 and compile the generated C++

codes with GCC 5.3 on the Xeon and Xeon Phi systems and

with GCC 5.4 on the Power system.

To perform the experiments, we set the domain size to 64×
64 × 60 elements with 3 × 3 × 3 halo elements similar to

the COSMO [4] production configuration. All experiments are

performed using double-precision floating-point numbers.

We set the number of processors to the available cores T =
18, T = 32, and T = 10 for the Xeon, Xeon Phi, and Power

systems, respectively.

To measure the execution time, we repeat every experiment

64 times and discard the first 16 measurements to warmup the
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Fig. 8: Measured (polygons) and estimated (lines) execution times for the fast memory (p=positions) and slow memory (i=input

arrays and b=boundary width) training stencils and variable tile sizes along the x-dimension.

memory hierarchy. Before every run, except when learning

the fast memory model, we flush the L1 and L2 caches with

dummy data. As we assume exclusive system access, we run

one thread per processor. We time only the stencil executions,

which excludes the initialization logic and the boundary con-

ditions. All plots show median values and nonparametric 95%
confidence intervals [13] to visualize the distribution of the

measurements.

B. Implementation

Absinthe provides a high-level stencil DSL to implement

stencil programs. Fig. 6 and Fig. 7 show the DSL version and

the generated code for the example stencil sequence introduced

in Sec. II-B, respectively. Absinthe parses the DSL to extract

the accesses patterns. Based on this analysis, the optimizer
derives the integer linear program and determines the optimal

solution using the CPLEX solver [14]. After the optimization,

the code generator emits C++ code that implements the fusion

and tile size choices of the optimal solution.

The code generator performs overlapped tiling [10] with

one tiling hierarchy level and periodic boundary conditions.

In addition to the stencil sequence, we also generate the

boilerplate necessary to execute, benchmark, and verify the

stencil sequence. The verification compares the results of the

parallel implementation to naive sequential code. The code

generator utilizes the Jinja2 template engine [15] to specialize

a generic stencil sequence template with the program-specific

logic.

C. Learning the Target Systems

Absinthe learns the performance model parameters once for

every target system and then tunes all stencil programs using

the same parameter set. Sec. III-D discusses the performance

model learning. We next evaluate the quality of the learned

model parameters.

To improve the noise robustness, we use all 48 measure-

ments per experiment when learning the model parameters

using LAD regression [11]. We use the median of the repeated

measurements when computing the R2 values.

Fig. 8 compares for the tile sizes 5 × 5 × x the measured

execution times of the training stencils to the learned fast
memory and slow memory models. We observe that for the

shown tile sizes, the execution times increase almost linearly

with the tile size along the x-dimension with model predictions

close to the measured execution times of the training stencils.

The annotations mark the different training stencils. For ex-

ample, the annotation p = 12 refers to the training stencil that

accesses twelve positions, and the annotation i = 3, b = 1
refers to the training stencil that accesses three input arrays

with boundary width one.
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Fig. 9: Measured and estimated execution times for the optimal (triangle), selected (squares), and random (dots) implementation

variants of the fastwaves (N = 9), diffusion (N = 16), and advection (N = 8) kernels.

The R2 values of 0.87, 0.95, and 0.94 for the fast memory
model and of 0.96, 0.96, and 0.90 for the slow memory model

confirm the quality of the learned model parameters for the

Xeon, Xeon Phi, and Power systems, respectively.

D. Tuning the Application Kernels

Existing benchmark suites such as PolyBench [16] often

contain stencil programs that iterate only one stencil instead of

multiple different stencils. To evaluate the quality of our fusion

and tile size selection choices, we thus implement three stencil

sequences from the COSMO atmospheric model [4]. These

real-world benchmark kernels contain one-, two-, and three-

dimensional stencils from first to fifth order. The fastwaves

kernel consists of nine stencils that compute the pressure gradi-

ent, update the horizontal wind speeds, and compute the wind

divergence. The diffusion kernel consists of sixteen stencils

that update the pressure and the wind speeds. The advection

kernel consists of eight stencils that transport the horizontal

wind speeds. The two-dimensional advection and diffusion

stencils access only neighbor elements in the horizontal xy-

plane, while the fastwaves stencils perform three-dimensional

accesses.

To perform the experiments, we adapt the COSMO stencils
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to match the current implementation of our code generator,

which supports only three-dimensional arrays and periodic

boundary conditions. We thus replace the original boundary

conditions and remove accesses to lower-dimensional arrays.

Fig. 9 shows the performance of Absinthe for all application

kernels and target systems. We compare the measured and

estimated execution times of the optimal solution found by

Absinthe to selected and random implementation variants with

group index and tile size constraints. Data points close to

the diagonal imply good model prediction. The dashed lines

delimit the region with 20% prediction error. The timings

include the stencil computation without boundary conditions.

Additionally, we add the following selected implementation

variants: the min and max heuristics combine minimal and

maximal fusion with the Absinthe tile size selection, the

hand approach reproduces the hand-tuned fusion and tile size

choices of the COSMO production code, and the auto-tuning
approach combines tile size auto-tuning with the Absinthe

fusion choices. As the hand and auto-tuning variants may

violate the cache size or load imbalance constraints, their

estimated execution times are possibly invalid.

The optimal solutions for the three application kernels con-

tain at most four stencil groups. To sample random implemen-

tation variants, we select 20 random group index assignments

with at most four groups and repeat the optimization with

constraints that fix the group indexes. To examine different

tile sizes, we also introduce tile size constraints that enforce

smaller or larger tiles along one dimension. In total, we sample

60 random implementation variants.

The auto-tuning exhaustively searches for every stencil

group the tile sizes 1, 2, 4, 12, 30, and 60 in the z-dimension

and the powers of two in the xy-plane. The tuning of isolated

stencil groups does not consider the cache reuse of consecutive

stencil groups. However, the approach circumvents the joint

evaluation of all stencil group tile size combinations. We

use the Absinthe fusion strategy to avoid auto-tuning the

exponential fusion search space.

a) fastwaves: The optimal solution for all target systems

splits the fastwaves kernel into two groups (Fig. 1 shows the

optimal solution for the Xeon system). The tile shapes reflect

the three-dimensional access patterns detailed in Fig. 10.

b) diffusion: The optimal solutions split the diffusion

kernel into two, one, and four groups of equal sizes with tile

size 64×13×1, 64×16×1, and 64×32×1 for the Xeon, Xeon

Phi, and Power systems, respectively. These choices reflect the

two-dimensional access pattern of the stencils and the different

L2 cache capacities. Most implementation variants perform

better than expected. We attribute this bias to the peel cost

of the slow memory model, which do not consider the cache

reuse of consecutive innermost loop executions that span the

full domain.

c) advection: The optimal solution of the advection

kernel fuses all stencils with tile size 64×16×1, 64×32×1,

and 64× 32× 1 for the Xeon, Xeon Phi, and Power systems,

respectively. The fast memory model dominates the predicted

execution time of the compute-intensive seven-point stencils.
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Fig. 10: Data-flow graph of the fastwaves kernel. All edges are

annotated with the non-center access offsets that the stencils

read in addition to the center position (i,j,k).

Especially for the Xeon Phi and Power systems, the fast

memory model tends to underestimate the measured execution

times. For example, since the cache accesses may not fully

overlap with the actual stencil computation.

The auto-tuned versions of the fastwaves, diffusion, and

advection kernels perform 6.5%, 0.8%, and 3.4% faster than

Absinthe for the Xeon system, 0.7%, 7.8%, and 7.1% faster

than Absinthe for the Xeon Phi system, and 6.1%, 2.5%, and

1.7% faster than Absinthe for the Power system, respectively.

The small performance penalty compared to the much slower

auto-tuning and the relative agreement of estimated and mea-

sured execution times demonstrate the effectiveness of our

approach for different stencils and hardware architectures.

The hand-tuned kernels perform well, but the manual opti-

mization of large codes is tedious and time-consuming. The

combination of fusion heuristics with Absinthe demonstrates

the challenge of independent fusion and tile size selection.

The auto-tuning approach always works best since it does

not depend on the performance model assumptions. For ex-

ample, the auto-tuned tile sizes violate the cache capacity

constraints of the Power system, which means tiles fitting the

L2 cache are not optimal for this architecture. Auto-tuning

generates 277 implementation variants for every stencil group,

which on the Xeon system results in 40 minutes search time

for the diffusion kernel. Extending the auto-tuning to the 215

fusion choices increases the search time beyond 10′000 hours.

Absinthe explores the full search space in 40 seconds.
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Fig. 11: Execution times of the Absinthe, Halide, and Poly-

mage tuned application kernels for domain size 256×256×60
on the Xeon system (slowdowns relative to Absinthe).

E. Comparison with Halide and Polymage

To compare Absinthe, we implement the application kernels

with Polymage [3] (git:a8a101b) and Halide [2] (git:3af2386).

We optimize the stencil sequences with the built-in auto-

schedulers [17], [18], compile the Absinthe and Polymage

kernels with GCC 5.3, and adapt the scheduling parameters

to match the processor count of the Xeon system.

Fig. 11 compares the execution times for the Absinthe,

Polymage, and Halide tuned application kernels. We set the

domain size to 256 × 256 × 60 elements since Halide and

Polymage do not perform well for small domains. Absinthe

and Polymage apply the same code transformations and use

the same compiler, which makes the results comparable.

Halide compiles with LLVM and performs loop reordering and

stencil inlining, which reduces the significance of the results.

Absinthe performs best for all kernels, which emphasizes the

quality of the fusion and tile size selection choices.

VI. RELATED WORK

Tile size selection is a well-researched topic with two main

directions: purely analytic approaches [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28] and empirical approaches [29],

[30], [31], [32] that search different configurations for optimal

performance. Yuki et al. [33] learn machine-specific static tile

size selection models. Artificial neuronal networks are also

effective for both instruction throughput prediction [34] and

tile size selection [35]. All of these works regard tile size

selection as a problem that must be solved after having already

committed to a certain loop structure.

D. Cociorva et al. [36] observe that program scheduling

and tile size selection are intertwined and propose a dynamic

programming based approach for combined scheduling and tile

size selection specific for tensor sequences. Their work does

not consider stencil computations. Quasem and Kennedy [37]

propose a model guided empirical approach for loop fusion

and tiling. Beaugnon et al. [38] also combine analytical mod-

eling and empirical search space exploration. They present an

analytical model to compute a lower bound for the execution

time of partially-specified program variants that allows them to

prune the search space early-on. None of these works provide

a linear programming formulation.

There exist several approaches for generating code for

iterative stencils. Patus [39] is a code generator for iterative

stencils on CPUs and GPUs. Henretty et al. [40] introduced

a code generator for iterative multi-statement stencils that

implements the DLT [41] data layout transformation. Both

code generators rely on tile size auto-tuning. Pochoir [42] is

an iterative stencil compiler that uses cache-oblivious tiling

techniques to avoid the tile size selection problem. Prajapati

et al. [43] manually derive tile size selection models for

single statement stencils executed on GPUs. They require non-

linear integer programming which takes hours to terminate and

commonly does not guarantee optimal solutions.

STELLA [44] is a domain-specific language for climate

modeling. Halide [2] and Polymage [3] are domain-specific

languages for image processing pipelines. All approaches

support the optimization of stencil programs with data-locality

transformations. MODESTO [9] is an analytic performance

model to derive optimal fusion patterns for stencil programs

based on memory bandwidth estimates. However, the model

does not consider loop overheads and other metrics impor-

tant for good tile size selection. For Polymage, Jangda and

Bondhugula [18] employ dynamic programming to explore the

space of fusion choices according to a cost function. During

the optimization, a heuristic selects suitable tile sizes. For

Halide, Liao et al. [45] and Mullapudi et al. [17] suggest

cost functions and custom optimization strategies to perform

automatic scheduling, which covers tile size selection. These

solutions do not integrate the fusion and tile size selection

choice in a single linear model. Absinthe thus provides the first

holistic integer linear programming formulation that simulta-

neously schedules stencil programs and chooses matching tile

sizes.

VII. CONCLUSION

Absinthe instantiates an optimization problem that evaluates

a learned performance model to select target system specific

data-locality transformations for stencil codes. Surprisingly six

performance model parameters are sufficient to capture the

relevant target system characteristics. The evaluation of the

performance model is fast and requires no complex operations.

We also demonstrate how to linearize the performance model

for stencil codes with known domain sizes of limited range.

These properties facilitate the efficient exploration of the

exponential search space with the help of powerful linear

solvers. Our empirical evaluation provides strong evidence that

learning a target-specific performance model is a competitive

alternative to auto-tuning.
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