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Introduction

 MPI as de-facto standard in parallel processing
 Collective operations are integral part of MPI
 Large body of research on advanced algorithms
 Multiple implementations in MPI libraries:

 e.g., MPICH2, MVAPICH, Open MPI
 “Group Operations” are also used in other 

environments (e.g., MRNet, Multicast)
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Motivation
 Group Operations are a general concept
 e.g., used in MPI, UPC, MRNet

 Nonblocking Collective operations arrived
 NBC will be in MPI 3.0 (or 2.3?)

 Most implementations are hard-coded
 Control-flow as static branches in source-code
 Requires considerable hand-tuning
 User-defined (sparse) collective operations (?)

 Hardware offload and NBC
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Broadcast Tree Examples
 Binomial trees used in many small-message          

collectives (e.g., Bcast, Reduce)
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Our Goals
 Define a minimal language to express 

collective communication to enable:

 efficient representation for offload
 fast and simple execution on slow PEs
 good specification of advanced algorithms
 execution on resource-constrained 

environments (NIC)
 (automatic) transformational optimizations
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Abstracting
 What is the minimal set of operations 

needed to perform any collective algorithm?
 Theorem 1 states that send, receive and 

(local) dependencies are sufficient to model 
any collective algorithm
 allows concise definition!

 Theorem 2 states that the order requirement 
is relative to each single operation
 allows optimized/adaptive execution!
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Group Operation Assembly Language
 Very low-level specification (compilation target)

 cf. RISC assembler code

 Translated into a machine-dependent form
 cf. RISC bytecode
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A Binomial Tree Example
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GOAL Language Interface
 GOAL Language interface (Bcast example):
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rank #1 {

r: recv <msg>,<len> from 0;

s1: send <msg>,<len> to 3;

s2: send <msg>,<len> to 5;   

requ s1 -> r;

requ s2 -> r;

}

rank #0 {

send <msg>,<len> to 1;

send <msg>,<len> to 2;

send <msg>,<len> to 4;

}

rank #5 {

recv <msg>,<len> from 1;

} …
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Group Operation Assembly Language
 Alternative schedule creation at runtime:
 Library interface:

 gop=GOAL_Create()
 id=GOAL_Send(sched, buf, size, dest)
 id=GOAL_Recv(sched, buf, size, dest)
 GOAL_Exec(sched, func, buf, size)
 GOAL_Requ(sched, src_id, tgt_id)
 sched=GOAL_Compile(gop)

 Internal representation reflects a 
dependency DAG 
 enables transformational optimizations
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Optimization possibilities
 Adaptive execution
 Possible to consider process arrival pattern
 independent ops: sent to ready hosts first
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Optimization Possibilities (cont.)
 Parallel execution
 Schedule (DAG) allows for parallel execution

 Multiple parallel NICs
 Same scheduling issues as for multicore task 

libraries (TBB, Cilk, OpenMP 3.0)
 Static schedule (compiler) optimization
 e.g., architecture-dependent pipelining

 Scheduler runs in thread or hardware
 Offload to spare CPU core
 Offload to NIC (same GOAL specification)
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Advanced Example - Dissemination
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Schedule Details
 Result of GOAL assembly
 Optimized for each architecture

 Should not lose flexibility
 Represents dependency/execution graph

 Our machine-dependent representation:
 We propose binary schedule
 Linear memory layout (cache/pre-fetch friendly)
 Executor only 98 SLOC C code in LibNBC
 Compression possible (not in this work)
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Execution Constraints
 How much memory do we need to execute a 

schedule?
 We can use a sliding window (hold only parts of 

the schedule in a scratchpad memory (NIC))
 Theorem 3: A schedule of length N can be 

executed with         additional memory using a 
constant-size window.

 it’s actually also                      see:             
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Execution Constraints (contd.)
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 memory consumption is infeasible
 SRAM on a NIC is expensive!

 Solution: introduce additional dependencies 
 BUT: additional dependencies     serialization

 Theorem 4: Each schedule can be executed 
in        memory, if dummy actions are added.  
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Implementation
 Ernest Rutherford: “We don’t have the 

money, so we have to think.” 
 no easy access to programmable NIC
 working with Myricom on Myrinet
 Mellanox seems to have a similar interface in 

it’s next generation API
 We offloaded to a spare CPU core
 threading model
 replacing current implementation in LibNBC
 less synchronicity than round-based scheme!
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Test System
 Odin Cluster at Indiana University
 4x InfiniBand SDR
 Single 288 port Mellanox switch
 128 nodes
 4 cores per node -> 512 cores

 Open MPI coll component “tuned”
 version 1.3

 LibNBC 1.0 (with NBCBench 1.0)
 OFED-optimized version (uses RDMA-W)
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Blocking Collectives
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No performance penalty!
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Nonblocking Collectives
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Even less overhead!
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Conclusions
 Abstract definition of group communication
 easy definition of (non-)blocking for offload
 universal (implements all collectives)
 small overhead, maximum asynchrony

 Enables compiler-based optimizations and 
dynamic scheduling
 e.g., pipelining, coalescing, memory registration

 First step towards high-level communication 
expression
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Future Work
 Investigate compiler optimizations
 Compress schedules (reduce resource needs)
 Implement scheduler on NICs

Questions?
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