
Torsten Hoefler
Indiana University

ICPP 2009
Vienna, Austria

Group Operation Assembly Language
- A Flexible Way to Express Collective Communication -

Torsten Hoefler¹, Christian Siebert²,
Andrew Lumsdaine¹

1

¹Open Systems Lab
Indiana University, Bloomington

²NEC Laboratories Europe
Sankt Augustin, Germany

09/25/09
ICPP 2009

Vienna, Austria

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Introduction

 MPI as de-facto standard in parallel processing
 Collective operations are integral part of MPI
 Large body of research on advanced algorithms
 Multiple implementations in MPI libraries:

 e.g., MPICH2, MVAPICH, Open MPI
 “Group Operations” are also used in other

environments (e.g., MRNet, Multicast)

2

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Motivation
 Group Operations are a general concept
 e.g., used in MPI, UPC, MRNet

 Nonblocking Collective operations arrived
 NBC will be in MPI 3.0 (or 2.3?)

 Most implementations are hard-coded
 Control-flow as static branches in source-code
 Requires considerable hand-tuning
 User-defined (sparse) collective operations (?)

 Hardware offload and NBC

3

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Broadcast Tree Examples
 Binomial trees used in many small-message

collectives (e.g., Bcast, Reduce)

4

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Our Goals
 Define a minimal language to express

collective communication to enable:

 efficient representation for offload
 fast and simple execution on slow PEs
 good specification of advanced algorithms
 execution on resource-constrained

environments (NIC)
 (automatic) transformational optimizations

5

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Abstracting
 What is the minimal set of operations

needed to perform any collective algorithm?
 Theorem 1 states that send, receive and

(local) dependencies are sufficient to model
any collective algorithm
 allows concise definition!

 Theorem 2 states that the order requirement
is relative to each single operation
 allows optimized/adaptive execution!

6

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Group Operation Assembly Language
 Very low-level specification (compilation target)

 cf. RISC assembler code

 Translated into a machine-dependent form
 cf. RISC bytecode

7

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

A Binomial Tree Example

8

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

GOAL Language Interface
 GOAL Language interface (Bcast example):

9

rank #1 {

r: recv <msg>,<len> from 0;

s1: send <msg>,<len> to 3;

s2: send <msg>,<len> to 5;

requ s1 -> r;

requ s2 -> r;

}

rank #0 {

send <msg>,<len> to 1;

send <msg>,<len> to 2;

send <msg>,<len> to 4;

}

rank #5 {

recv <msg>,<len> from 1;

} …

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Group Operation Assembly Language
 Alternative schedule creation at runtime:
 Library interface:

 gop=GOAL_Create()
 id=GOAL_Send(sched, buf, size, dest)
 id=GOAL_Recv(sched, buf, size, dest)
 GOAL_Exec(sched, func, buf, size)
 GOAL_Requ(sched, src_id, tgt_id)
 sched=GOAL_Compile(gop)

 Internal representation reflects a
dependency DAG
 enables transformational optimizations

10

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Optimization possibilities
 Adaptive execution
 Possible to consider process arrival pattern
 independent ops: sent to ready hosts first

11

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Optimization Possibilities (cont.)
 Parallel execution
 Schedule (DAG) allows for parallel execution

 Multiple parallel NICs
 Same scheduling issues as for multicore task

libraries (TBB, Cilk, OpenMP 3.0)
 Static schedule (compiler) optimization
 e.g., architecture-dependent pipelining

 Scheduler runs in thread or hardware
 Offload to spare CPU core
 Offload to NIC (same GOAL specification)

12

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Advanced Example - Dissemination

13

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Schedule Details
 Result of GOAL assembly
 Optimized for each architecture

 Should not lose flexibility
 Represents dependency/execution graph

 Our machine-dependent representation:
 We propose binary schedule
 Linear memory layout (cache/pre-fetch friendly)
 Executor only 98 SLOC C code in LibNBC
 Compression possible (not in this work)

14

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Execution Constraints
 How much memory do we need to execute a

schedule?
 We can use a sliding window (hold only parts of

the schedule in a scratchpad memory (NIC))
 Theorem 3: A schedule of length N can be

executed with additional memory using a
constant-size window.

 it’s actually also see:

15

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Execution Constraints (contd.)

16

 memory consumption is infeasible
 SRAM on a NIC is expensive!

 Solution: introduce additional dependencies
 BUT: additional dependencies serialization

 Theorem 4: Each schedule can be executed
in memory, if dummy actions are added.

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Implementation
 Ernest Rutherford: “We don’t have the

money, so we have to think.”
 no easy access to programmable NIC
 working with Myricom on Myrinet
 Mellanox seems to have a similar interface in

it’s next generation API
 We offloaded to a spare CPU core
 threading model
 replacing current implementation in LibNBC
 less synchronicity than round-based scheme!

17

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Test System
 Odin Cluster at Indiana University
 4x InfiniBand SDR
 Single 288 port Mellanox switch
 128 nodes
 4 cores per node -> 512 cores

 Open MPI coll component “tuned”
 version 1.3

 LibNBC 1.0 (with NBCBench 1.0)
 OFED-optimized version (uses RDMA-W)

18

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Blocking Collectives

19

No performance penalty!

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Nonblocking Collectives

20

Even less overhead!

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Conclusions
 Abstract definition of group communication
 easy definition of (non-)blocking for offload
 universal (implements all collectives)
 small overhead, maximum asynchrony

 Enables compiler-based optimizations and
dynamic scheduling
 e.g., pipelining, coalescing, memory registration

 First step towards high-level communication
expression

21

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Future Work
 Investigate compiler optimizations
 Compress schedules (reduce resource needs)
 Implement scheduler on NICs

Questions?

22

