EHzürich

TORSTEN HOEFLER, SABELA RAMOS, CARLOS OSUNA, FELIX THALER, STEFAN MOOSBRUGGER, OLIVER FUHRER

Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL and the COSMO Weather Code

Microarchitectures are becoming more and more complex

A DEAL PROPERTY AND A DEAL

How to optimize codes for these complex architectures?

- Performance engineering: "encompasses the set of roles, skills, activities, practices, tools, and deliverables applied at every phase of the systems development life cycle which ensures that a solution will be designed, implemented, and operationally supported to meet the non-functional requirements for performance (such as throughput, latency, or memory usage)."
- Manually profile codes and tune them to the given architecture
 - Requires highly-skilled performance engineers
 - Need familiarity with NUMA (topology, bandwidths etc.) Caches (associativity, sizes etc.)

Microarchitecture (number of outstanding loads etc.)

An engineering example – Tacoma Narrows Bridge

Scientific Performance Engineering

The lot of the second second

Modeling by example: KNL Architecture (mesh)

A DESCRIPTION OF THE OWNER OF THE

KNL Architecture (memory: Flat & Cache)

A DEAL AND A

KNL Architecture (all to all mode)

A DEAL PROPERTY AND A DEAL

KNL Architecture (Quadrant or Hemisphere)

Carl Martin Participation and States

KNL Architecture (SNC-4 or SNC-2)

A DEAL PROPERTY AND A DEAL

KNL Architecture

Step 1: Understand core-to-core transfers – MESIF cache coherence

A CANADA AND A CANADA THE

Location: only 5-15% difference

Contention effects?

That is curious!

Step 2: Understand core-to-memory transfers – DRAM and MCDRAM

a cliff of a second state that

Performance engineers optimize your code!

A principled approach to designing cache-to-cache broadcast algorithms

A REAL PROPERTY AND A REAL

S. Ramos, TH: "Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi", ACM HPDC'13 S. Ramos, TH: "Cache line aware optimizations for ccNUMA systems (IEEE TPDS'17).

Model-driven performance engineering for broadcast

Contra and the Part of the

Model-driven performance engineering for broadcast

S. Ramos and T. Hoefler: Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL, IPDPS'17

Reduce (5x faster then OpenMP)

Easy to generalize to similar algorithms

Barrier (7x faster than OpenMP)

S. Ramos and T. Hoefler: Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL, IPDPS'17

What about real applications?

Image credit: Oliver Fuhrer, MeteoSwiss

A STREET

Participan and

and the state of the state

and the second

Operational model of MeteoSwiss today!

as a la section of

∆**x = 1100 m** (100,000x)

Operational model of MeteoSwiss before 2016!

 $\Delta x = 2200 \text{ m} (1,000,000 \text{ x})$

D

Basic Atmospheric Equations

Wind
Pressure
Temperature
Water
Density

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \rho \mathbf{g} - 2\mathbf{\Omega} \times (\rho \mathbf{v}) - \nabla \cdot (\mathbf{T})$$

$$\frac{dp}{dt} = -(c_{pd}/c_{vd})p\nabla \cdot \mathbf{v} + (c_{pd}/c_{vd} - 1)Q_h$$

$$\rho \frac{dq}{dt} = \frac{dp}{dt} + Q_h$$

$$\rho \frac{dq^v}{dt} = -\nabla \cdot \mathbf{F}^v - (I^l + I^f)$$

$$\rho \frac{dq^{l,f}}{dt} = -\nabla \cdot (\mathbf{P}^{l,f} + \mathbf{F}^{l,f}) + I^{l,f}$$

$$\rho = p\{R_d(1 + (R_v/R_d - 1)q^v - q^l - q^f)T\}^{-1}$$

A CONTRACT

ECMWF-Model

16 km Grid 2 x per day 10 days prediction

COSMO-7

6.6 km Grid 3 x per day 72 h prediction

COSMO-1

1.1 km Grid 7 x pro day 33 h prediction 1 x pro day 45 h prediction

The COSMO Code – 300k SLOC Fortran

A DECEMBER OF THE PARTY

Stencil computations (oh no, another stencil talk)

Motivation:

Important algorithmic motif (e.g., finite difference method)
 Definition:

due to the typically low arithmetic intensity stencil computations are often memory bandwidth limited!

- Element-wise computation on a regular grid using a fixed neighborhood
- Typically working on multiple input fields and writing a single output field

lap(i,j) = -4.0 * in(i,j) + in(i-1,j) + in(i+1,j) + in(i,j-1) + in(i,j+1)

How to tune such stencils (most other stencil talks)

LOTS of related work!

- Compiler-based (e.g., Polyhedral such as PLUTO [1])
- Auto-tuning (e.g., PATUS [2])
- Manual model-based tuning (e.g., Datta et al. [3])
- ... essentially every micro-benchmark or tutorial, e.g.:

Common features

- Vectorization tricks (data layout)
- Advanced communication (e.g., MPI neighbor colls)
- Tiling in time, space (diamond etc.)
- Pipelining

Much of that work DOES NOT compose well with complex <u>stencil programs</u> in weather/climate

What is a "complex stencil program"? (this stencil talk)

E.g., the COSMO weather code

- is a regional climate model used by 7 national weather services
- contains hundreds of different complex stencils

Modeling stencils formally:

- Represent stencils as DAGs
 - Model stencil as nodes, data dependencies as edges

simplified horizontal diffusion example

Horizontal Diffusion Stencil Program tuned to Xeon Phi KNL

Work performed at the Intel Parallel Computing Center at ETH Zurich

Vertical Advection Stencil Program tuned to Xeon Phi KNL

Work performed at the Intel Parallel Computing Center at ETH Zurich

Scientific performance engineering for complex memory systems

A Stand Street of the

all and the second

Backup

Sorting in complex memories

Memory model: Bitonic Mergesort

- Slices of 16 elements go through a bitonic network.
- Communication: CPUo accesses data from local and remote caches.
- Synchronization: CPU0 waits for CPU1.
- Memory accesses: latency vs. bandwidth.

spcl.inf.ethz.ch

and the second se

Bitonic Sort of 1 kiB measurement Mem. model Lat. 0.20 Mem. model BW atency (seconds) Full model Lat. model including 0.15 Full model BW × synchronization cost Measured 0.10 Synchronization outweights memory costs for small data! 0.05 model (just) So don't parallelize memory costs too much! 0.00 128 2 16 32 64 256 8 Number of threads (a) Sorting 1 KB of integers.

Bitonic Sort of 4 MiB

Shire Party and a strength

Bitonic Sort of 1 GiB

The most surprising result last ...

Hey, but which memory? DRAM or MCDRAM? The model (and practical measurements) indicate that it does not matter.

Thesis: the higher bandwidth of MCDRAM did not help due to the higher latency (log² n depth).

Disclaimer: this is NOT the best sorting algorithm for Xeon Phi KNL. It is the best we found with limited effort. We suspect that a combination of algorithms will perform best.

<title>code ninja</title>