
Performance Modeling for the Masses

Torsten Hoefler

Performance Modeling Panel at SC’11

2/10 T. Hoefler: Performance Modeling for the Masses

Model-guided Optimization - Motivation

• Parallel application performance is complex

• Often unclear how optimizations impact performance

• Issue for applications at large-scale

• Models can guide optimizations

• One of our models shows:

• Local memory copies to prepare

 communication are significant

• Re-engineering resulted in 20% performance gain of a QCD code

• Frequent communication synchronizations are critical

• Importance increases with P – new algorithms in development

3/10 T. Hoefler: Performance Modeling for the Masses

What is Performance Modeling

• Representing performance with analytic expressions

• Not just series of points from benchmarks

• Enables derivation to find sweet-spots

• Why performance modeling?

• Extrapolation (scalability)

• Insight into requirements

• Message sizes, HW/SW Co-Design

• Purchasing decisions based on models

• BUT: It’s mostly used by computer scientists!

• Our goal: enable application developers and domain

scientists to use performance modeling

4/10 T. Hoefler: Performance Modeling for the Masses

Our Simple Methodology

• Combine analytical methods and

performance measurement tools

• Programmer specifies expectation

• E.g., T = a+b*N3

• Tools find the parameters

• Empirically, e.g., least squares

• We derive the scaling analytically and

fill in the constants with empirical measurements

• Models must be as simple and effective as possible

• Simplicity increases the insight

• Precision needs to be just good enough to drive action

5/10 T. Hoefler: Performance Modeling for the Masses

Other Philosophies

• Simulation:

• Very accurate prediction, little insight

• Traditional Performance Modeling (PM):

• Focuses on accurate predictions

• Tool for computer scientists, not application developers

• Our view: PM as part of the software engineering process

• PM for design, tuning and optimization

• PMs are developed with algorithms and used in each step

of the development cycle

Performance Engineering

6/10 T. Hoefler: Performance Modeling for the Masses

When and where should it be used?

• During the whole software development cycle

• Analysis (pick the right algorithms)

• Design (pick the right design pattern)

• Implementation (choose implementation options)

• Testing (test if performance expectations are met)

• Maintenance (monitor performance)

• Performance bugs can be as serious and

expensive as correctness bugs!

7/10 T. Hoefler: Performance Modeling for the Masses

Our Process for Existing Codes

• Simple 6-step process:

• Analytical steps (domain expert or source-code)

1) identify input parameters that influence runtime

2) identify most time-intensive kernels

3) determine communication pattern

4) determine communication/computation overlap

• Empirical steps (benchmarks/performance tools)

1) determine sequential baseline

2) determine communication parameters

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP

8/10 T. Hoefler: Performance Modeling for the Masses

Example Serial Model: MILC

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP

9/10 T. Hoefler: Performance Modeling for the Masses

Example Parallel Model: MILC

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP

10/10 T. Hoefler: Performance Modeling for the Masses

Conclusions

• We advocate performance modeling as tool for

• Increasing performance

• Guide application design and tuning

• Guide system design and tuning

• Throughout the whole software development process!

• Early results and key takeaways:

• PM has been successfully applied to large codes

• PM-guided optimization does not require high precision

• Looking for insight with rough bounds is efficient

All used images belong to the owner/creator!

