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WHAT YOUR VENDOR SOLD YOU 
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WHAT YOUR APPLICATIONS GET 

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads“, Elsevier Computing  

10% of  
ping-pong 
performance 

observed application bandwidth 
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WHAT YOUR APPLICATIONS GET 

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads “, Elsevier Computing  

10% of  
ping-pong 
performance 

Why? 

Slide 4 of 22 



LOCAL COPY VS. REMOTE COPY 
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 PGAS languages do not support datatypes 

 Send noncontiguous elements separately? 

 

PUT MAXIMUM CONTIGUOUS BLOCKS? 

Maximal Block 

Put Put Put Put Put 
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SHARED MEMORY, PGAS, MESSAGE PASSING 

OpenMP, Pthreads, MPI-3, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, … 

origin specifies target address 
no involvement of target control flow 

origin specifies channel 
target specifies address 

simple compiler analysis and transformations static message matching  

 One-Sided Control Flow! 
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 Can we utilize the “one-sided control flow” to 
optimize non-contiguous communications? 

 During compilation, automatically? 

 

 

 

 Backslice from communication to packing loop 
Or accumulate communications to the same target 

 Affine loops are easy to handle 

 

 

 

 

 

RESEARCH QUESTIONS AND CONTRIBUTIONS 

Kjolstad et al. [2]: “We have implemented the algorithm in  
a tool that transforms packing code to MPI Datatypes.” 

[2]: Kjolstad et al.: “Automatic Datatype Generation and Optimization”, PPoPP’12 
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for ( int iters=0; iters<niters; iters++) { 
 compute_2d_stencil( array, ... ); 
 // swap arrays (omitted for brevity) 
 for ( int i=0; i<bsize; ++i ) 
  sbufnorth[i] = array[i+1,1]; 
 // ... omitted south, east, and west pack loops 
 RMA_Put( sbufnorth , rbufnorth , bsize , north ); 
 // ... omitted south , east , and west communications 
 RMA_Fence(); 
 for ( int i =0; i<bsize; ++i ) array[i+1,0] = rbufnorth[i]; 
 // ... omitted south, east, and west unpack loops 
} 

EXAMPLE: FULL PACKING 
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for ( int iter=0; iter<niters; ++iter ) { 
 compute_2d_stencil( array, ... ); 
 // swap arrays ( omitted for brevity ) 
 for ( int i=0; i<bsize ; i++ ) { 
  RMA_Put( array[i+1,1], array[i+1,0], size, north ); 
  // ... omitted south, east, and west communications 
 } 
 RMA_Fence( ); 
} 

EXAMPLE: MAXIMAL BLOCKS 
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HIGH-LEVEL OVERVIEW 

Pack First 

Put 

Pipelined-Pack-Put 

Put Put 

Maximal Block 

Put Put Put Put Put 

Optimal size  
for each step? 

Optimal copy code? 

Traditional Approaches Pipelined Packing 
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APPLICABILITY? 

Observation I: If contiguous blocks > 512 kiB then put directly! 
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BANDWIDTH CONSIDERATIONS 

Observation II: Larger transfers attain higher bandwidth (well known) 
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Fully Packed Communication 
 
 
 
 
 

Maximum Block Communication 
 
 
 
 
 

A MODEL FOR NONCONTIGUOUS TRANSFERS 

Maximal Block 

Put Put Put Put Put 
a1 a2 a3 a4 a5 

S = {a1, a2, a3, a4, a5} Block at target 
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Pipeline packing and remote put 
 
 
 
 

MODELING NON-CONTIGUOUS PUTS 

Optimization Problem: find the n optimal partitions! 

Strategy I: fixed partition size  
                   (“fixed pipeline”)  

Strategy II: close-to-optimal partition  
                     size (“Superpipeline” *3+)  

[3]:A. Denis: “A high performance superpipeline protocol for InfiniBand”, EuroPar 2011 
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 Lots of choice to move 
data! 

 > 36 ways on x86 

 Restricted semantics 
allow for Super- 
optimization [4] 

 Exhaustive search 

 Runs ~1 day 

 Generates close-to-
optimal sequences 

 

MODELING AND OPTIMIZING LOCAL COPIES 

Overview of data movement and 
loop-forming instructions on x86-64. 

[4]: S. Bansal and A. Aiken: “Automatic generation of peephole superoptimizers”, SIGPLAN Notices 2006 
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OPTIMIZED LOCAL COPY SEQUENCE 

optimized copy 

libc memcpy() 

libc bcopy() 

7x 

>3x 

Slide 17 of 22 



NETWORK COMMUNICATION MODEL 

Inter-node communication 
performance on JYC (R2=0.999) 

latency + synchronization 

per-put overhead 
(inverse message rate) 

per-byte overhead 
(inverse bandwidth) 

JYC (Gemini): 
 L=1 us 
 o=0.69 us 
 0.17 ns/B  

Piz Daint (Aries): 
 L=1 us 
 o=0.66 us 
 0.06 ns/B  
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RESULTS I: FFT PARALLEL TRANSPOSE 

JYC Piz Daint 
JYC (Gemini): 
 L=1 us 
 o=0.69 us 
 0.17 ns/B  

Piz Daint (Aries): 
 L=1 us 
 o=0.66 us 
 0.06 ns/B  
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RESULTS II: SPECFEM3D (12B BLOCKS) 

JYC Piz Daint 
JYC (Gemini): 
 L=1 us 
 o=0.69 us 
 0.17 ns/B  

Piz Daint (Aries): 
 L=1 us 
 o=0.66 us 
 0.06 ns/B  
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 Data layout from 
SPECFEM3D_GLOBE 

 4 Byte blocks with irregular 
displacements on sender, 
consecutive on receiver 

 High copy overhead 
because of the small block 
size 

RESULTS III: IRREGULAR DATA TRANSFER 

JYC 
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 Process-local compiler transformations speed up 
communication >2x 

 Analytic performance models work in practice 

 Superoptimization for specialized domains 
  

 Thanks to 

 

 

 
 the anonymous reviewers and Kimura-san 

CONCLUSIONS & ACKNOWLEDGMENTS 
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Backup Slides 
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PROGRAMMING MODELS OVERVIEW 

OpenMP, Pthreads, CUDA, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, … 

 races, deadlocks, livelocks 
 hidden locality 
 memory model issues 
 scalability issues 

 races, deadlocks, livelocks 
 memory model issues 
 no coherency 

 coherency 
 direct match to hardware 

 explicit locality 
 scalable 
 direct match to hardware 

 deadlocks (rare) 
 matching overheads 

 explicit locality 
 scalable 
 no races etc. 
 ease of use 
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