
COMPILER OPTIMIZATIONS FOR
NON-CONTIGUOUS REMOTE DATA MOVEMENT

TIMO SCHNEIDER, ROBERT GERSTENBERGER, TORSTEN HOEFLER

WHAT YOUR VENDOR SOLD YOU

Slide 2 of 22

WHAT YOUR APPLICATIONS GET

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads“, Elsevier Computing

10% of
ping-pong
performance

observed application bandwidth

Slide 3 of 22

WHAT YOUR APPLICATIONS GET

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads “, Elsevier Computing

10% of
ping-pong
performance

Why?

Slide 4 of 22

LOCAL COPY VS. REMOTE COPY

Slide 5 of 22

 PGAS languages do not support datatypes

 Send noncontiguous elements separately?

PUT MAXIMUM CONTIGUOUS BLOCKS?

Maximal Block

Put Put Put Put Put

Slide 6 of 22

SHARED MEMORY, PGAS, MESSAGE PASSING

OpenMP, Pthreads, MPI-3, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, …

origin specifies target address
no involvement of target control flow

origin specifies channel
target specifies address

simple compiler analysis and transformations static message matching

 One-Sided Control Flow!

Slide 7 of 22

 Can we utilize the “one-sided control flow” to
optimize non-contiguous communications?

 During compilation, automatically?

 Backslice from communication to packing loop
Or accumulate communications to the same target

 Affine loops are easy to handle

RESEARCH QUESTIONS AND CONTRIBUTIONS

Kjolstad et al. [2]: “We have implemented the algorithm in
a tool that transforms packing code to MPI Datatypes.”

[2]: Kjolstad et al.: “Automatic Datatype Generation and Optimization”, PPoPP’12

Slide 8 of 22

for (int iters=0; iters<niters; iters++) {
 compute_2d_stencil(array, ...);
 // swap arrays (omitted for brevity)
 for (int i=0; i<bsize; ++i)
 sbufnorth[i] = array[i+1,1];
 // ... omitted south, east, and west pack loops
 RMA_Put(sbufnorth , rbufnorth , bsize , north);
 // ... omitted south , east , and west communications
 RMA_Fence();
 for (int i =0; i<bsize; ++i) array[i+1,0] = rbufnorth[i];
 // ... omitted south, east, and west unpack loops
}

EXAMPLE: FULL PACKING

Slide 9 of 22

for (int iter=0; iter<niters; ++iter) {
 compute_2d_stencil(array, ...);
 // swap arrays (omitted for brevity)
 for (int i=0; i<bsize ; i++) {
 RMA_Put(array[i+1,1], array[i+1,0], size, north);
 // ... omitted south, east, and west communications
 }
 RMA_Fence();
}

EXAMPLE: MAXIMAL BLOCKS

Slide 10 of 22

HIGH-LEVEL OVERVIEW

Pack First

Put

Pipelined-Pack-Put

Put Put

Maximal Block

Put Put Put Put Put

Optimal size
for each step?

Optimal copy code?

Traditional Approaches Pipelined Packing

Slide 11 of 22

APPLICABILITY?

Observation I: If contiguous blocks > 512 kiB then put directly!

Slide 12 of 22

BANDWIDTH CONSIDERATIONS

Observation II: Larger transfers attain higher bandwidth (well known)

Slide 13 of 22

Fully Packed Communication

Maximum Block Communication

A MODEL FOR NONCONTIGUOUS TRANSFERS

Maximal Block

Put Put Put Put Put
a1 a2 a3 a4 a5

S = {a1, a2, a3, a4, a5} Block at target

Slide 14 of 22

Pipeline packing and remote put

MODELING NON-CONTIGUOUS PUTS

Optimization Problem: find the n optimal partitions!

Strategy I: fixed partition size
 (“fixed pipeline”)

Strategy II: close-to-optimal partition
 size (“Superpipeline” *3+)

[3]:A. Denis: “A high performance superpipeline protocol for InfiniBand”, EuroPar 2011
 Slide 15 of 22

 Lots of choice to move
data!

 > 36 ways on x86

 Restricted semantics
allow for Super-
optimization [4]

 Exhaustive search

 Runs ~1 day

 Generates close-to-
optimal sequences

MODELING AND OPTIMIZING LOCAL COPIES

Overview of data movement and
loop-forming instructions on x86-64.

[4]: S. Bansal and A. Aiken: “Automatic generation of peephole superoptimizers”, SIGPLAN Notices 2006
 Slide 16 of 22

OPTIMIZED LOCAL COPY SEQUENCE

optimized copy

libc memcpy()

libc bcopy()

7x

>3x

Slide 17 of 22

NETWORK COMMUNICATION MODEL

Inter-node communication
performance on JYC (R2=0.999)

latency + synchronization

per-put overhead
(inverse message rate)

per-byte overhead
(inverse bandwidth)

JYC (Gemini):
 L=1 us
 o=0.69 us
 0.17 ns/B

Piz Daint (Aries):
 L=1 us
 o=0.66 us
 0.06 ns/B

Slide 18 of 22

RESULTS I: FFT PARALLEL TRANSPOSE

JYC Piz Daint
JYC (Gemini):
 L=1 us
 o=0.69 us
 0.17 ns/B

Piz Daint (Aries):
 L=1 us
 o=0.66 us
 0.06 ns/B

Slide 19 of 22

RESULTS II: SPECFEM3D (12B BLOCKS)

JYC Piz Daint
JYC (Gemini):
 L=1 us
 o=0.69 us
 0.17 ns/B

Piz Daint (Aries):
 L=1 us
 o=0.66 us
 0.06 ns/B

Slide 20 of 22

 Data layout from
SPECFEM3D_GLOBE

 4 Byte blocks with irregular
displacements on sender,
consecutive on receiver

 High copy overhead
because of the small block
size

RESULTS III: IRREGULAR DATA TRANSFER

JYC

Slide 21 of 22

 Process-local compiler transformations speed up
communication >2x

 Analytic performance models work in practice

 Superoptimization for specialized domains

 Thanks to

 the anonymous reviewers and Kimura-san

CONCLUSIONS & ACKNOWLEDGMENTS

Slide 22 of 22

Backup Slides

Slide 23 of 22

PROGRAMMING MODELS OVERVIEW

OpenMP, Pthreads, CUDA, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, …

 races, deadlocks, livelocks
 hidden locality
 memory model issues
 scalability issues

 races, deadlocks, livelocks
 memory model issues
 no coherency

 coherency
 direct match to hardware

 explicit locality
 scalable
 direct match to hardware

 deadlocks (rare)
 matching overheads

 explicit locality
 scalable
 no races etc.
 ease of use

Slide 24 of 22

