
3968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Polyhedral Compilation for Racetrack Memories
Asif Ali Khan, Hauke Mewes, Tobias Grosser, Member, IEEE, Torsten Hoefler, Senior Member, IEEE,

and Jeronimo Castrillon , Senior Member, IEEE

Abstract—Traditional memory hierarchy designs, primarily
based on SRAM and DRAM, become increasingly unsuitable
to meet the performance, energy, bandwidth, and area require-
ments of modern embedded and high-performance computer
systems. Racetrack memory (RTM), an emerging nonvolatile
memory technology, promises to meet these conflicting demands
by offering simultaneously high speed, higher density, and non-
volatility. RTM provides these efficiency gains by not providing
immediate access to all storage locations, but by instead stor-
ing data sequentially in the equivalent to nanoscale tapes called
tracks. Before any data can be accessed, explicit shift operations
must be issued that cost energy and increase access latency. The
result is a fundamental change in memory performance behav-
ior: the address distance between subsequent memory accesses
now has a linear effect on memory performance. While there are
first techniques to optimize programs for linear-latency memo-
ries, such as RTM, existing automatic solutions treat only scalar
memory accesses. This work presents the first automatic compi-
lation framework that optimizes static loop programs over arrays
for linear-latency memories. We extend the polyhedral compila-
tion framework Polly to generate code that maximizes accesses to
the same or consecutive locations, thereby minimizing the num-
ber of shifts. Our experimental results show that the optimized
code incurs up to 85% fewer shifts (average 41%), improving
both performance and energy consumption by an average of
17.9% and 39.8%, respectively. Our results show that automatic
techniques make it possible to effectively program linear-latency
memory architectures such as RTM.

Index Terms—Compiler optimization, domain wall memory,
layout transformation, loop transformation, polyhedral compi-
lation, racetrack memory (RTM), shifts optimization, tensor
contraction.

I. INTRODUCTION

THE MEMORY system is an essential component of any
computer system. The rapid increase in the number of

Manuscript received April 18, 2020; revised June 12, 2020; accepted
July 6, 2020. Date of publication October 7, 2020; date of current version
October 27, 2020. This work was supported in part by the German Research
Council (DFG) through the TraceSymm Project under Grant CA 1602/4-1
and the Cluster of Excellence “Center for Advancing Electronics Dresden;”
in part by the Swiss National Science Foundation under the Ambizione
Program under Grant PZ00P2168016; and in part by the ARM Holdings plc
and Xilinx Inc., in the context of Polly Labs. This article was presented in
the International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems 2020 and appears as part of the ESWEEK-TCAD special
issue. (Corresponding author: Asif Ali Khan.)

Asif Ali Khan, Hauke Mewes, and Jeronimo Castrillon are with the
Chair for Compiler Construction, TU Dresden, 01069 Dresden, Germany
(e-mail: asif_ali.khan@tu-dresden.de; hauke.mewes@mailbox.tu-dresden.de;
jeronimo.castrillon@tu-dresden.de).

Tobias Grosser and Torsten Hoefler are with the Scalable Parallel
Computing Laboratory, ETH Zürich, 8053 Zürich, Switzerland (e-mail:
tobias.grosser@inf.ethz.ch; htor@inf.ethz.ch).

Digital Object Identifier 10.1109/TCAD.2020.3012266

cores per processor in the last decade puts tremendous pres-
sure on memory system designers to increase memory capacity
and improve memory system performance at a rate propor-
tional to the increase in core count. This, however, is highly
constrained by the technological scaling, high leakage, and
refresh powers of conventional SRAM and DRAM technolo-
gies. In the embedded domain where area and power budgets
are restricted, the efficient design of the memory system
becomes particularly challenging. To fill this void and catch
up with the development in compute capabilities, various new
memory technologies have been proposed of late, including
ferroelectric RAM (FeRAM), phase change memory (PCM),
spin transfer torque (STT-RAM), resistive RAM (ReRAM),
and racetrack memory (RTM) also known as domain wall
memory [1]–[5]. While all these new technologies, being non-
volatile, are highly energy efficient, most of them have large
cell sizes, limited durability, and high write latencies, restrict-
ing their applicability in embedded devices. RTM, on the
other hand, presents a favorable option that not only offers
SRAM comparable access latency but also promises to pass
the density barrier (satisfying the area constraint), and avoid
the memory power wall [6]. A direct comparison of the RTM
device features to other prominent memory technologies is
presented in [7].

The fundamental benefit of RTM over other technologies
comes from its ability to store multiple data bits—up to 100—
per cell [5], [7]. A cell in RTM is a magnetic nanowire (track)
that densely packs data-bits in the form of magnetic domains
separated by domain walls and is associated with one or more
access ports. Accessing a data bit from the nanowire requires
shifting and aligning it to a port position. These shift oper-
ations in RTM not only induce energy overhead but also
make the access latency location-dependent (up to 26-fold
latency penalty [8]). Various architectural optimizations and
data placement solutions have been proposed to mitigate the
number of RTM shifts. However, there exists no compila-
tion framework that automatically generates efficient code for
RTM-based systems. Traditional spatial locality optimizations
thoroughly studied for mainstream (random access) technolo-
gies, do not suffice for these linear-latency memories. We
identify a new kind of spatial locality called minimal-offset
locality which is offset sensitive, and optimize it so that the
offset distance in subsequent memory accesses is minimized.

In this article, we present extensions to LLVM’s polyhe-
dral loop optimization framework Polly [9] to cater for RTMs.
We introduce optimization passes that improve the minimal-
offset locality by enabling back and forth accesses to memory
locations, thus minimizing the number of shifts. The RTM

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5007-445X

KHAN et al.: POLYHEDRAL COMPILATION FOR RACETRACK MEMORIES 3969

passes can be enabled together with the default Polly opti-
mizations for data locality and parallelism or in stand-alone
mode. We demonstrate the efficacy of our framework on
the PolyBench [10] and consortium for small-scale modeling
(COSMO) [11] kernels, which represent a good mix of com-
pute and memory intensive kernels. Our proposed framework
uses existing and newly developed memory passes to analyze
the memory access pattern of a program and automatically
transforms both the loop structure and the data layout to
minimize the RTM shifts.

Our contributions are as follows.
1) We introduce an RTM-specific memory analysis that

examines the memory access pattern of a program and
identifies potential loop candidates for transformations.
The analysis looks for memory accesses that can poten-
tially be optimized by changing their access order and
passes on the information to the schedule optimizer.

2) We present optimizations that transform a program’s
loop structure and data layout to reduce large address
jumps between subsequent memory accesses.

3) We integrate our analysis and transformation passes in
LLVM Polly to make an end-to-end automatic compila-
tion framework for RTM-based systems.

4) We evaluate our framework on a rich set of benchmarks
and perform a detailed performance/energy consumption
analysis of the transformed programs.

Our experimental results show that our framework can
reduce the number of shifts by up to 85% in 62.5% of the
cases which on average improves the RTM performance and
energy consumption by 17.9% and 39.8%, respectively.

II. BACKGROUND

This section explains the RTM principle, cell structure, and
overall architecture. Further, it provides background on the
elements of the polyhedral model relevant to this work.

A. Racetrack Memory

The nanowires in RTM can be organized horizontally or
vertically on the surface of a silicon wafer as depicted in Fig. 1.
Each wire in RTM stores K bits and is associated with an
access port usually made up of a magnetic tunnel junction
(MTJ) transistor. While there may be more than one access
port per track, they are always less than the number of domains
due to the larger footprint of the access transistor. In our case,
we consider the highest density RTM architecture and thus
assume one port per track. The access latency of RTM also
depends on the velocity with which domains move inside the
nanowire, which in turn depends on the shift current density
as well as the number of domains per nanowire.

The RTM nanowires are grouped together to form domain
wall block clusters (DBCs) which are basic building blocks
of an RTM array [7], [12], [13]. The hierarchical organiza-
tion of RTM, similar to other technologies, consists of ranks,
banks, and subarrays as illustrated in Fig. 2(a). As for the
data storage, each DBC comprising T nanowires stores data
bits in an interleaved fashion which facilitates parallel access
of all bits belonging to the same data word. Access ports of all

Fig. 1. RTM cell structure.

(b)(a)

Fig. 2. Overview of the RTM architecture. A DBC consists of T (e.g., 32)
nanowires and stores K (e.g., 64) T-b words in a bit-interleaved fashion. The
figure on the right shows parallel accesses to DBCs for improved bandwidth
utilization and hiding shift latency. (a) RTM architecture. (b) Pipeline.

Listing 1. GEMM kernel from PolyBench [10].

nanowires in a DBC point to the same location and domains
can be moved together in a lock-step fashion as shown in the
figure.

B. Polyhedral Compilation

The polyhedral model is a mathematical framework for
describing programs consisting of affine loop nests and affine
accesses. It can express potentially complex loop transfor-
mations as a single affine function and can optimize all
programs that satisfy the following properties. The program
has code regions with static control, also referred to as static
control parts (SCoPs) [14], [15], loop bounds are affine expres-
sions of the surrounding loop variables, each loop has exactly
one induction variable, and the SCoP statements operate on
multidimensional arrays with indices being affine functions of
the loop variables and parameters.

The polyhedral model has three major components:
1) iteration domain; 2) access relation; and 3) schedule. To
explain them, we consider the SCoP in Listing 1 as a running
example.

1) Iteration Domain: The iteration domain (D) of a state-
ment is the set of its dynamic instances during execution. This
corresponds to a vector space having dimensionality equal to

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

3970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

the depth of the loop nest and where each point in the space
represents a statement instance with coordinates reflecting the
values of the iteration variables. For the example in Listing 1,
the iteration domain of statement S is

DS = {S(i, k, j) | 0 ≤ i < I ∧ 0 ≤ k < K ∧ 0 ≤ j < J}
where i, k, and j represent iteration variables while I, K, J are
global (structure) parameters.

2) Access Relation: The memory access relation links state-
ment instances to the array elements on which they operate.
The relation corresponds either to a read or a write, repre-
sented by two sets (R, W). The relations for S in the example
are

RS = {S(i, k, j)→ A(i, k)} ∪ {S(i, k, j)→ B(k, j)}
∪ {S(i, k, j)→ C(i, j)}

WS = {S(i, k, j)→ C(i, j)}.
3) Schedule: A schedule assigns a logical time-stamp in

the form of a tuple to each statement instance. Statements are
then scheduled in the lexicographical order of the tuples. The
original schedule for the running example is

{S(i, k, j)→ (i, 1, k, j)} ∪ {R(i, j)→ (i, 0, j, 0)}
which specifies that for any given combination of values of
i, k, j statement R will be executed before statement S.

4) Schedule Trees: Schedules in polyhedral compilers are
represented in different ways depending on how they are com-
puted. Most scheduling algorithms compute schedules in a
recursive way with each level computing a partial schedule.
A partial schedule is a (piecewise) quasi-affine function. The
overall schedule is then obtained by concatenating all partial
schedules. Considering this, Verdoolaege et al. [16] argued that
representing schedules with explicit tree-like structures is not
only more natural but also more practical and proposed sched-
ule trees (current schedule representation in Polly). Nodes in
the schedule tree can be one of the following types.

1) Domain is typically the root of the tree and represents
the iteration domain.

2) Band holds partial schedules.
3) Filter puts restriction on the iteration domain, i.e., selects

a subset of statement instances from the outer domain.
4) Sequence enforces order on children nodes. Only Filter

nodes can be children of a sequence node.
5) Set is similar to Sequence node but children nodes may

be executed in any order.
6) Mark allows the user to mark subtrees in the schedule.
5) Polyhedral Affine Scheduler: The default affine schedul-

ing algorithm in Polly—named as isl scheduler—is inspired
by Pluto [15] and is implemented in the isl library [17]. It
transforms an input program for different optimization objec-
tives while considering the architectural features of modern
processors. Similar to Pluto, it aims at maximizing temporal
locality and parallelism while preserving program semantics.
However, it offers different groups of relations such as valid-
ity relations, proximity relations, and coincidence relations
that make it more powerful and enables more (target-specific)
optimizations. The isl scheduler provides support for various

loop transformations, such as loop fusion, distribution, and
(multilevel) parallelism by operating on the data-dependence
graph and using different groups of relations. It provides a
thorough analysis of the memory accesses and their depen-
dencies and offers a unified model to maximize temporal and
spatial locality while avoiding false-sharing. Using its rich
set of features, it can generate efficient schedules for modern
multicore CPU and GPU targets.

C. Motivation

The memory performance of an application primarily
depends on how well temporal and spatial locality is exploited.
For kernels, such as gemm (see Listing 1) and stencils (see
Section III) that generally exhibit high spatial locality, tech-
niques, such as tiling can be used to improve their temporal
locality by splitting large size arrays into blocks that fit in the
on-chip memories (cache, scratchpad). If all tiles for the gemm
kernel are loaded in a mainstream on-chip memory, the latency
of the next access depends upon whether the data is in the same
cache block (irrespective of the exact position/offset inside
the block) or not. In case the next access references a new
cache block, its location inside the memory does not affect the
access latency. The gemm kernel within a tile can be computed
in many different orders without affecting the performance.
Specifically, long strides do not hurt performance.

The performance and energy consumption of RTM depends
on an application’s minimal-offset locality since the offset dis-
tance in subsequent accesses determines the number of shifts
required to access the data. Since a single shift operation is
almost as expensive as a read operation (see Table I), long
jumps within DBCs (consecutive accesses to locations that
are far from each other) can lead to significant performance
degradation. In the worst case, shifting can make RTMs up
to (K − 1)× slower while in the best-case scenario, they can
outperform SRAM by more than 12% [8]. In this work, we
specifically focus on optimizing within DBC accesses to avoid
long jumps and maximize the minimal-offset accesses.

As an example, let us assume that all rows of A, B, and C
are stored in separate DBCs and the access ports in all DBCs
initially point to location 0. For larger row sizes, conventional
tiling can be used to split them into blocks that fit in DBCs.
For i = k = 0, the innermost j loop will incur J−1 shifts each
in DBCs storing row-0 of both matrices A and C. However,
for the next iteration of loop k, the access ports in both these
DBCs need to be reset to location 0, incurring another J − 1
shifts without doing any useful work. These overhead shifts
amount to 50% of the overall shifts in the gemm kernel which
can be prevented if we change the memory access order. For
instance, the order of memory accesses generated by the code
in Listing 2 cuts the number of shifts to roughly half com-
pared to the code in Listing 1. Further optimizations such
as parallel accesses to DBCs and preshifting can be applied
on top of our optimizations to overlap the access and shift
latencies in different DBCs, improving the performance and
bandwidth efficiency [see Fig. 2(b)]. Similarly, with prefetch-
ing, the access latency can be overlapped with the operation
latency [18].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

KHAN et al.: POLYHEDRAL COMPILATION FOR RACETRACK MEMORIES 3971

Listing 2. Optimized code for the GEMM kernel in Listing 1.

III. PROGRAM TRANSFORMATIONS FOR RTMS

This section presents a high-level overview of the over-
all compilation flow and describes our proposed loop and
layout transformations to generate efficient code for RTMs.
Polyhedral codes operate on array accesses and can be trans-
formed to improve spatial locality. However, array regions
are often accessed more than once (e.g., in stencils) which
requires undoing shifts as illustrated in Section II-C. We
explain our mechanism of identifying such patterns in a pro-
gram and subsequently elucidate on our loop transformations.
The section closes with an analysis of the correctness of the
transformations and their current limitations.

A. Overall Compilation Flow

Fig. 3 presents a high-level overview of the compilation
flow. Our transformations are independent passes that do not
affect the front-end and back-end optimizations of LLVM.
Polly takes the LLVM IR, preprocesses it, builds SCoPs (if
any), performs dependence analysis, and computes the sched-
ule tree. This original schedule can be further optimized using
the default isl scheduler [19] in Polly. We place the isl sched-
uler before our transformations because we expect standard
optimizations (see Section II-B5) to improve the reach of
our transformations. Also, note that the isl schedule applies
transformations from scratch and could thus not start from
a partially optimized schedule (e.g., after our RTM sched-
uler). The RTM scheduler (see Section III-B), similar to the
isl scheduler, takes the dependence analysis and the sched-
ule tree and returns a modified schedule tree representing a
shifts-optimized schedule. After the RTM scheduler, we per-
form layout transformations (see Section III-C) that further
reduce shifts, in particular for loops with dependencies. The
Polly backend then translates the modified schedule tree into
an AST and ultimately to LLVM IR.

B. Schedule Transformations for RTMs

Let us consider the simple kernel in Listing 3 from the hori-
zontal diffusion stencil in the COSMO model—an atmospheric
model used for climate research and operational applications
by various meteorological services [11]. Let us assume that
each DBC stores exactly one row of an array and access
ports in all DBCs point to location 0. To compute the result-
ing array lap, each row in array in needs to be accessed

Listing 3. Simplified stencil for horizontal diffusion from the COSMO model.

Listing 4. Transformed code for the kernel in Listing 3.

three times (i − 1, i, i + 1). In general, since several state-
ment instances access the same memory location, the loop
nest exhibits potential for data-reuse (locality). However, from
the RTM perspective, the longer delays required for resetting
access ports may adversely affect both the performance and
the energy consumption, offsetting the locality benefits.

The long delays in RTM could be circumvented by enabling
two-way accesses to array in as shown in Fig. 4. The bi-
directional accesses in in are generated from the optimized
code shown in Listing 4 which reduces the number of RTM
shifts by around 40% (the original code incurs approximately
(3 × J + 2 × J) × I while the transformed code needs only
(3× J)× I shifts). To be able to generate this optimized code,
we first need to identify potential targets, i.e., array in and
loop j in this case, by analyzing the memory access pattern
and subsequently change the order of memory accesses so that
long shifts are avoided. For the example, this means that the
execution order of all statement instances in the j loop needs
to be reversed for every second iteration of the outer loop i.
Since the alternation decision is based on the value of i, we
name it alternation base (AB) in the rest of this article while
loop j is referred to as the alternation candidate (AC). Note
that there can be more than one AC(s) and AB(s) in any given
n-deep loop nest where n > 2.

The schedule optimizer is shown in Algorithm 1. It takes a
SCoP S and dependencies D of a program as input. Assuming
that S is not empty, the algorithm extracts the schedule
tree from the schedule map and normalizes it (see lines 2
and 3 in Algorithm 1). The normalization step traverses
the schedule tree to make sure that each band node (see
Section II-B3) represents exactly one dimension. This eases
subsequent operations to annotate band nodes in the tree as
AC and AB.

Analysis for Optimization Targets: The proposed trans-
formations for bi-directional accesses are only effective in
mitigating RTM shifts if an input program has memory regions
that are accessed by multiple statement instances. To identify
this, we iterate through the access maps of all arrays that are
referenced by stmt, and for each map l, check the injectivity
(see line 7).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

3972 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 3. High-level overview of the overall compilation flow.

Fig. 4. Shifts within a DBC. The figure demonstrates the shifting operation
by highlighting one row/DBC (R2/DBC-2) and shows how the access port
in the DBC (represented by the arrow) needs to be reset after each iteration
of i for the example code in Listing 3. The transformed code in Listing 4
eliminates the overhead shifts by enabling bi-directional accesses.

In the example, the access map of lap is injective because
each of its location is referenced by exactly one statement
instance (i.e., R1(i,j) → lap(i,j)) while in is not
because each in[i][j] is referenced by statement instances
(R1(i,j), R1(i-1,j), R1(i+1,j), R1(i,j-1), and
R1(i,j+1)). If the access function is injective, there is no
need for optimization because array locations are accessed
only once and the order of accesses may not have a significant
impact on the number of shifts.

For noninjective access maps, the algorithm first splits the
access map l and groups memory accesses by their loop
access order (see line 8). Memory accesses in[i][j],
in[i][j+1], in[i+1][j], etc., are all of the same loop
access order because the order of loop variables in the
index expressions does not change while memory accesses
in[i][j], in[j][i], in[0][j] for example have dif-
ferent loop order. Each referenced array in the SCoP body
can have one or more groups, depending on the loop
access order in the accesses. For each group, the algo-
rithm searches for ABs and ACs and annotates them (see
line 11).

Locating and Annotating ACs and ABs: The algorithm iden-
tifies the innermost access dimension by dropping all but the
last dimension of the access map (dimension j in the example).
We name it the innermost index for the rest of the discussion.
Note that there can be more than one innermost index in
an access map, e.g., in tmp[i][i+j]. To find the AC, we
locate the innermost access index in the statement dimensions
(see line 19). If the innermost index involves more than one

dimension, i.e., we get more than one statement dimensions as
AC, the algorithm does nothing and moves to the next group
(see lines 20 and 21). These kinds of accesses are irregular
and alternation for one dimension may negatively impact the
number of shifts. In order to mark AC in the schedule tree,
we take the schedule tree and traverse it (bottom-up) up to
the first band node that has dimension in SD and mark it (see
lines 22–28).

For the identified AC (j in our example), we search through
the remaining statement dimensions (i in this case) to find
a base for alternation. For this, the algorithm first inverses
the access map and sorts the statement instances lexicograph-
ically to find the first statement instance. Subsequently, it
finds the distance set of all statement instances from the first
instance (see line 29). In our example, each statement instance
R1(i, j) accesses (in(i,j), in(i+1,j), in(i-1,j),
in(i,j+1), in(i,j-1)) (see Listing 3). The computed
inversed map gives the information that each memory loca-
tion in(i,j) is accessed by five instances (R1(i,j),
R1(i-1,j), R1(i+1,j), R1(i,j-1), R1(i,j+1))
where R1(i-1,j) is lexicographically minimal. However,
since we are only interested in dimensions other than AC, we
fix j to 0 and find potential ABs from the computed distance set
(1, 0), (0, 0), (2, 0) which, in this case, indicates that loop i is
to be used as a potential base for alternation (see line 30). This
is determined by fixing dimensions to zero, one by one, and
checking that the resulting set is a nonempty strict subset of the
original distance set. In our example, we have only one remain-
ing dimension i, fixing this to 0 makes it a nonempty strict
subset of the original distance set. The algorithm, therefore,
selects i as a potential AB.

Similar to the AC, we locate and mark the AB band in
the schedule tree (see lines 31–37). Note that the traversal of
the schedule tree for AB starts from the node above AC to
make sure that the AB band is up in the hierarchy in the tree
(outer loop of AC). At this point, the algorithm leaves the
AnnotateBand function and returns the marked schedule tree
(see line 38).

Transformation: In the returned schedule tree, if the AC and
AB nodes are marked successfully and the AC band does not
carry dependencies, i.e., its associated coincidence flag is set
to true, all correctness checks are passed and the schedule of
the AC band can be safely modified (see lines 12 and 13). The
optimizer replaces the schedule of the AC band by creating
two partial schedules with distinct domains representing the
schedules for forward and backward accesses, respectively,
(see lines 14).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

KHAN et al.: POLYHEDRAL COMPILATION FOR RACETRACK MEMORIES 3973

Algorithm 1: RTM Schedule Optimizer
Input: SCoP as S, Dependencies D
Output: S with RTM optimized schedule

1 Global: bool ACF, ABF; Band AC, AB
2 T ← Get schedule tree from S
3 T ← Normalize T
4 foreach stmt ∈ S do
5 L← List of arrays accessed by stmt
6 foreach l ∈ L do
7 if l is not injective then
8 G← split l by access order
9 N ← Find stmt leaf in T

10 foreach g ∈ G do
11 T ← AnnotateBands(T, N, g)
12 if ACF = true ∧ ABF = true then
13 if coincidence flag of AC is true then
14 Alternate the AC loop based on

AB (see Listings 2, 4)
15 Return S
16

17 Function AnnotateBands(T, N, g):
18 ACF← false, ABF← false
19 SD ← Set of statement dimensions that affects the

innermost dimension of g
20 if |SD| 	= 1 then
21 return T
22 while N is not a Filter node do
23 N ← Parent of N in T
24 if N is a Band node then
25 if schedule dimension of N is in SD then
26 AC← N
27 ACF← true
28 break
29 DS← compute distance set of statement instances

from g−1

30 PAB← find potential AB loops for g in DS
31 while N is not a Domain node do
32 N ← Parent of N in T
33 if N is a Band node then
34 if schedule dimension of N is in PAB then
35 AB← N
36 ABF← true
37 break
38 return T

For the example codes in Listings 1 and 3, the transformed
codes are presented in Listings 2 and 4, respectively. The
schedule optimizer eliminates the longer shifts in all array
accesses by alternating the inner-most loop j in both kernels.

C. Data Layout Transformations

The schedule transformation mitigates the number of RTM
shifts by modifying the execution order of statement instances.
Generally, such transformations are beneficial and effective in
kernels, such as the ones in Listings 1 and 3. However, in other
cases such as Listing 5, data dependencies in SCoP statements

Listing 5. SCoP Example for Data Layout Transformation. The SCoP
Statement Bears Data Dependencies

Fig. 5. Data layout transformation. Each column in the transformed layout
stores three rows (clarified with color-coding). In general, each column stores
dr rows where dr is determined by the pseudocode in Algorithm 2.

strictly prohibit statement reordering. In this case, Algorithm 1
would make no changes and return the identity schedule. To
eliminate the longer RTM shifts in such kernels we propose a
layout transformation, similar to those proposed for optimizing
stencil computations on SIMD architectures [20].

For stencil kernels, such as Listing 3, we first find the num-
ber of distinct rows (dr) that are accessed in each iteration of
i, 3 in the example, and then change the data layout by storing
dr-consecutive rows of the original layout in one column in
the transformed layout. This means that J (equal to 3 in this
example) elements of each row are now distributed across J-
DBCs and dr rows across dr × J DBCs in total (see Fig. 5).
In case the number of available DBCs in RTM is less than
dr × J, techniques, such as tiling could be used [20].

For the first complete iteration of the inner loop j, no shifts
are required because all elements of the first three rows are
stored at location 0 in each DBC. For the next iteration, the
outer loop increments by one which means all elements in
the first J-DBCs storing the elements of the fourth row need
to be shifted by one, pointing to location 2 now. Note that
these elements are stored in the same DBCs which store the
elements of row 1. However, since the first row will not be
accessed again, there is no need for shifting backward. Further,
DBCs storing rows 2 and 3 can reuse elements without any
additional shifting. Access ports in those DBCs are realigned
to new elements only when there is no further reuse of the
data elements in them. This interleaving of rows and elements
across DBCs eliminates long shifts. Every new iteration of the
outer loop requires at most one shift in J DBCs out of the total
3×J DBCs while the inner loop iterations require no shifting.

Algorithm 2 analyzes the memory access pattern to deter-
mine dr. Similar to Algorithm 1 and the description in the
previous section, we first group memory accesses by array

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

3974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Algorithm 2: Layout Transformation
Input: SCoP as S, dbcs

1 L← List of referenced arrays
2 foreach l ∈ L do
3 if l has more than one access orders then
4 return
5 if l is not injective then
6 Set the innermost index to 0
7 Find the distance set
8 Compute stencil size i.e., dr
9 Apply layout transformation

names (see line 1). The example code in Listing 5 has
only array a. The algorithm then checks injectivity (see
Section III-B) and fixes the innermost index to 0 for each
noninjective array. This is due to the fact that data is stored
in row-major layout in DBCs and the innermost index (in
this example j) corresponds to within DBC accesses. For the
remaining dimensions (i in this case), we compute the distance
set (see Section III-B) which determines the number of dis-
tinct rows in the stencil, i.e., 3 in our example. The algorithm
then applies the layout transformation illustrated in Fig. 5.

D. Correctness and Limitations

A program transformation is only valid if it respects all
dependencies. For our alternation transformation in specific,
we use the same constraints that are used for loop paralleliza-
tion. The isl scheduler already provides information for this
which is reused in the RTM scheduler (placed after the isl
scheduler, see Fig. 3). Since our scheduler can also be run as
a standalone pass, it also includes a dependency checker to
make sure program semantics are preserved.

For a dependence relation D of the form (stmt→ stmt) and
a schedule map M of the form (stmt→ ldate) where ldate is a
logical-date representing a schedule tuple, we construct a new
relation R = {(ldate1, ldate2); ldate1 = M(stmt1), ldate2 =
M(stmt2) ∀(stmt1, stmt2) ∈ D}, i.e., each element in R repre-
sents a pair of logical-dates of dependent statements. By taking
the difference of all tuples in R, we end up having a set L of
logical-dates. If the value for a specific loop is zero for all
ldate ∈ L, it can be safely alternated otherwise the scheduler
moves to the next memory access group.

Note that our transformation operates on SCoP statements
and does not optimize across loop nests. For an array accessed
in multiple loop nests of the same program, our scheduler
optimizes accesses in each loop nest separately. The reason is
that the penalty of not optimizing across loop nests is negligi-
ble. It boils down to a one-time long shift to align the access
port(s).

For our transformations, we assume that the memory sub-
system allows us to reason about access locality. In modern
computing systems where security is a prime design consider-
ation and the memory subsystem, in particular, is vulnerable to
attacks, such as bus snooping and memory extraction, memory
encryption becomes necessary to protect memory contents. If

TABLE I
RTM PARAMETERS (256 MB RTM, 32 nm, 32 TRACKS / DBC)

encryption is performed in software similar to [21], our trans-
formations are unaffected. However, if a memory device uses
dedicated hardware for encryption similar to Intel SGX [22] or
the AMD variant [23], it may not allow reasoning about access
locality at the current abstraction layer. For such systems, tech-
niques need to be developed that allow optimization, such as
ours to be applied at a point where access locality can be
reasoned about.

IV. RESULTS AND DISCUSSION

This section presents our experimental setup and a descrip-
tion of the evaluated benchmarks followed by an analysis and
evaluation of our proposed transformations for RTMs. We first
look into the shifts reduction and then analyze the kernels’
latency and energy consumption.

A. Experimental Setup and Benchmarks

Our transformations are integrated in the LLVM/Polly
pipeline (9.0.1). The compilation host is an Intel core i7
(3.8 GHz) processor and 32 GB of memory running Linux
Ubuntu (16.04). As a target system, we use an RTM-based
scratchpad memory backed by off-chip DRAM. We use
the RTM simulator RTSim [24] in trace-drive mode, with
memory traces extracted from Polly. The memory parame-
ters of RTSim are listed in Table I. The latency and energy
numbers are extracted from the circuit-level memory simulator
density [25]. The per-access and per-shift latency and energy
numbers also include the latency/energy of the peripheral
circuitry.

For evaluation, we use two well-known benchmark suites,
namely, the standard polyhedral polybench suite and kernels
from an atmospheric model COSMO, which is widely used in
climate research and operational applications. Polybench con-
sists of 29 applications from different domains including linear
algebra, data mining, and stencil kernels [10]. The COSMO
is a numerical atmospheric model for weather forecasting and
large-scale climate modeling used by numerous national mete-
orological services and academic communities [26]. A central
part of the COSMO implementation applies over 150 stencils
and operates on 13 arrays on average. However, most of these
stencils are not compute-bound. As such, the performance
of the model largely depends upon the efficient use of the
memory system. We use three representative benchmarks of
the COSMO model (horizontal diffusion, vertical advection,
and fast waves) for evaluating our transformations.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

KHAN et al.: POLYHEDRAL COMPILATION FOR RACETRACK MEMORIES 3975

Fig. 6. Comparison of RTM shifts reduction in different configurations. All results are normalized to the baseline identity configuration.

For evaluation purposes, we enable/disable different trans-
formation passes in the compilation flow (see Fig. 3) and
compare the generated code. Concretely, we evaluate the
following configurations.

1) identity: Program with the original identity schedule
(baseline), i.e., with transformations disabled.

2) isl: Program with only the isl optimized scheduler [19],
i.e., RTM-specific transformations disabled. This config-
uration helps us understand the impact of a state-of-the-
art optimizer, without modifications, on an RTM-based
system.

3) rtmst: Program with the RTM schedule transforma-
tions (see Section III-B) applied directly to the original
schedule, i.e., isl scheduler and layout transformations
disabled.

4) isl-rtmst: Program with the isl and RTM schedule
transformations enabled.

5) rtm-slt: Program with the RTM schedule and layout
transformations enabled (see Section III-C).

6) isl-rtm-slt: Transformed code with the entire compila-
tion pipeline enabled (isl scheduler, RTM scheduler, and
layout transformation).

B. RTM Shift Analysis

Fig. 6 presents a summary of the RTM shifts of all con-
figurations across all benchmarks compared to the baseline
(identity). On average (geometric mean), the (rtmst, rtm-slt,
isl, isl-rtmst, and isl-rtm-slt) configurations reduce the RTM
shifts by (9%, 21.8%, 6.2%, 13%, and 30.9%), respectively.
Note however that these averages include results of those
benchmarks where no configuration alters the RTM shifts, e.g.,
gesummv, jacobi-1d, ludcmp, and mvt.

To highlight the reduction in RTM shifts by our transforma-
tions alone, Fig. 7 presents only those benchmarks where rtmst
or rtm-slt always reduce shifts. On average for these bench-
marks, the rtm-slt and isl-rtm-slt configurations reduce RTM
shifts by 41.6% and 53.3%, respectively. The rtmst reduces
the number of shifts in nine cases by an average of 26%
(maximum up to 49% in the gemm kernel). In the remaining
kernels, the optimizer either marginally improves or worsens
the number of shifts, i.e., ≤ ±2% (doitgen and advection)
or returns the identity schedule (no change). This is in line
with the description of the schedule optimizer in Section III-B

Fig. 7. Comparison of RTM shifts reduction in different configurations.
All results are normalized to the baseline identity configuration. The figure
presents only those benchmark kernels where our transformations reduce RTM
shifts. For all other kernels, our transformations does not change the original
schedule.

where we explain how we only transform potentially beneficial
programs and leave others unaffected. The only kernel where
rtmst increases the number of shifts by a mere 2% is advec-
tion. Our analysis of the code suggests that this is due to the
conflicting optimization demands of the memory accesses in
the SCoP statement which could be resolved by either enabling
layout transformations or running isl before rtmst (to split the
loop nest and enable optimization).

By enabling the data layout transformation, the schedule
optimizer (rtm-slt) further reduces the number of RTM shifts
by 12% (maximum up to 83% in seidel-2d). While the addi-
tional shifts reduction in rtm-slt mostly stems from the data
layout transformation, in some specific cases layout trans-
formation also enables schedule transformations for efficient
shifts reduction (e.g., in fdtd-2d and advection).

The impact of the isl affine scheduler [19], alone, on the
RTM shifts, is arbitrary. To demonstrate this, Fig. 8 presents
only those benchmarks where the isl scheduler always affects
RTM shifts, either positively or negatively. It may reduce the
number of RTM shifts by as much as 85% (e.g., in diffusion)
or exacerbate them by more than 100% (e.g., in gramschmidt).
This is expected because the scheduling algorithm tries to
maximize parallelism and locality with no regard to RTM
shifts (see Section II-B5). For the experimental results in
Figs. 6–8, we run the scheduler with all possible options and
select the best configuration (the isl implemented Pluto [15]
variant + schedule_whole_component) [27], in terms of the
RTM shifts. Close analysis of the kernels where the isl

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

3976 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 8. Normalized results of RTM shifts reduction in different configurations. All results are normalized to the baseline identity configuration. The figure
presents only those kernels where the isl scheduler affects the RTM shifts.

scheduler minimized the RTM shifts reveals that the reduc-
tion in shifts either comes from loop-fusion (as in the case of
diffusion) or loop-reordering (e.g., in gemver). In both cases,
the transformed code maximizes memory accesses to the same
DBC location, i.e., all n accesses to a DBC-location are per-
formed before moving to the next location in some or all
arrays, thus reduces the number of RTM-shifts.

In kernels bicg, gramschmidt and syr2k, isl exacerbates the
number of RTM shifts. The RTM scheduler, if enabled after isl
in the pipeline, improves the isl results in the majority of the
cases but still in some kernels the number of shifts is higher
compared to the baseline.

On average, isl-rtmst reduces the RTM shifts by 13.7%
which is 11.4% less compared to isl. Some interesting ker-
nels to analyze are the gemver, threemm, trmm, and twomm
where the isl scheduler moves the data flow dependencies
from inner to outer loops and enables the RTM scheduler
to split and alternate the inner loops. In some cases, such
as symm and twomm, both rtmst and isl when applied sep-
arately do not mitigate the RTM shifts. However, together
they reduce the number of shifts by 14% and 26%, respec-
tively. The isl optimized code does not improve the number
of RTM shifts but it splits the outer-loop, in the case of symm
for example, which allows the rtmst to alternate the inner
loop.

The isl-rtm-slt configuration combines the impact of the
individual gains of each configuration. More importantly, the
optimized schedule of this configuration complements the
locality and parallelism benefits of the isl scheduler with RTM
shifts optimizations. On average, the shifts reduction com-
pared to the baseline translates to 29.5% which is (3.5%,
−8.5%, 27.3%, and 15.8%) better compared to (rtmst, rtm-slt,
isl, and isl-rtmst), respectively. More importantly, it signifi-
cantly increases the optimization coverage, that is, the ratio
of the number of kernels where shifts are minimized to
the total number of kernels. The isl-rtm-slt mitigates shifts
in 62.5% of the cases which is (25%, 12.5%, 31.3%, and
15.6%) better compared to (rtmst, rtm-slt, isl, and isl-rtmst),
respectively.

C. RTM Performance Analysis

Fig. 9 presents the impact of shifts reduction on the RTM
latency (smaller is better). On average, the improvement (geo-
metric mean across all reported benchmarks) in latency for all

configurations (rtmst, rtm-slt, isl, isl-rtmst, and isl-rtm-slt) is
(5.9%, 13.1%, 3.8%, 7.1%, and 17.9%), respectively.

Rtmst alone reduces the RTM latency by up to 22% (in
the heat-3d and gemm kernels). Interestingly, the absolute
shift savings in different applications not necessarily directly
correlate with the RTM latency reduction. For instance in
rtmst, the shifts reduction in the gemm kernel (with respect
to the baseline) is higher compared to that of the heat-
3d kernel. However, for the same configuration, the RTM
latency improvements are comparable (22% in both cases).
Our analysis of results suggests that this is due to the
higher number of per-access shifts in the heat-3d kernel com-
pared to that of the gemm kernel in their identity schedules.
Rtm-slt further reduces the latency of the heat-3d kernel
by 24%.

The latency results of isl generally show a similar trend to
the shifts reduction in Fig. 8. The kernel gramschmidt dis-
plays an interesting behavior with only 17% increase in the
RTM latency compared to a more than 100% increase in the
RTM shifts. This kernel mostly references similar or consec-
utive locations in memory (bearing on average 1 shift per 4
accesses). As a result, although isl exacerbates the number of
shifts significantly, the impact on the RTM latency is not as
severe. The isl-rtm-slt configuration clearly shows that except
in isolated cases, it outperforms all other configurations and
can improve the RTM access latency by as much as 52.6% in
heat-3d, and 48.2% in diffusion. As for the COSMO kernels
alone, the significant reduction in RTM shifts (61.3% on aver-
age) improves the RTM latency by an average 35.4% (in the
best configuration, i.e., isl-rtm-slt).

D. RTM Energy Consumption Analysis

Fig. 10 reports the normalized RTM energy consump-
tion (smaller is better) of all configurations compared to the
baseline. On average (geometric mean), the gain in energy
consumption for (rtmst, rtm-slt, isl, isl-rtmst, and isl-rtm-slt)
is (12.1%, 28.6%, 8.6%, 17.4%, and 39.8%), respectively.
The reduction in the RTM energy consumption is due to the
simultaneous improvements in both the leakage energy and
the dynamic energy. While the improvement in the dynamic
energy comes from the reduction in the RTM shifting oper-
ations, the gain in the leakage energy consumption stems
from a shorter execution time. For rtmst, the average leak-
age energy reduction is 5.9% while for isl-rtm-slt it is 17.9%.
Similar to our results analysis in Section IV-B, isl-rtm-slt

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

KHAN et al.: POLYHEDRAL COMPILATION FOR RACETRACK MEMORIES 3977

Fig. 9. Impact of the schedule and layout transformations on the overall latency/runtime. All results are normalized to the baseline identity configuration.
The ideal random access (accesses require no shifts) RTM gives a lower bound on the latency.

Fig. 10. RTM energy consumption in various configurations. All results are normalized to the baseline identity configuration. The ideal random access
(accesses require no shifts) RTM configuration gives a lower bound on the energy consumption.

combines the benefits of all other configurations and reduces
more energy compared to others. For instance, in the heat-3d
kernel, the isl configuration itself does not affect the number
of RTM shifts and hence its energy consumption, however,
it enables transformations that lead to 85.3% reduction in
the RTM energy consumption compared to 35.6% alone by
the rtmst configuration. For the COSMO kernels, the RTM
energy consumption is reduced by a significant 67.1% (geo-
metric mean). For the diffusion kernel alone, the significant
reduction in the RTM shifting operations (81%) reduces its
runtime by 48.2% (see Fig. 9) and its energy consumption
by 81.3%.

Compared to other memory technologies, there are plenty
of works that demonstrate that RTMs are significantly more
energy-efficient than SRAM, STT-MRAM, and DRAM and
can improve the energy consumption by more than 3× [8],
[12], [18], [28], [29].

E. Impact on Code Size and Compilation Time

The code size of the rtmst increases by an average of 25%
across all benchmarks which is 16% higher than the code size
of the isl configuration. For the polybench kernels alone, the
code size compared to the baseline increases by 8.2% which
is 2.8% less than the code size of the isl. For the COSMO
kernels, the rtmst increases the code size by 1.9× compared
to the identity schedule while the isl reduces the code size
by 9.5%. The reason is that the isl scheduler fuses multiple

loop nests while the RTM scheduler alternates every loop nest
separately, increasing code size.

As for the compilation time, overall, there is no mea-
surable difference in isl-rtmst and isl as shown in Fig. 11.
The rtmst configuration slightly increases the compilation
time. However, except in isolated cases, such as diffusion
and heat-3d, this increase in compilation time is negligible.
Our analysis of the source code suggests that the compi-
lation time for rtmst increases because it treats loop nests
separately while the isl and isl-rtmst configurations oper-
ate on fused loops, when possible, making them slightly
faster.

V. RELATED WORK

RTM has been evaluated across the memory hierarchy for
different application domains and different system setups.
Owing to its unprecedented density, Park et al. [30] evaluated
RTM as an SSD replacement in a graph processing applica-
tion and observed not only a significant boost in performance
but also up to 90% reduction in energy consumption. As
main memory, RTM has reportedly outperformed iso-capacity
DRAM in terms of performance (49%) and energy consump-
tion (75%) [28], [29]. When explored at the last-level cache,
RTM demonstrated significant improvements in performance
(25%), energy (1.4×), and area (6.4×) [12], [31]. Similar
trends have been shown at lower cache levels [32], at GPU-
register files [33], [34], and for RTM-based scratchpad mem-
ories [18], [35]. Exploiting its physical properties, recent

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

3978 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 11. Average compilation time (in seconds) of different configurations for all benchmarks.

works have also proposed RTM-based logic devices [36] and
in-memory acceleration of neural networks [37].

The shift operations in RTM can lead to errors that can
be eliminated using correction techniques, such as [38], [39].
In addition, the significant performance and energy gain in
RTM-based systems is strictly dependent on the number of
RTM shifts. If not handled properly, these shift operations can
degrade the RTM performance by up to 26× compared to an
iso-capacity SRAM [8] and can consume more than 50% of
the energy [40]. Various hardware and software solutions have
been proposed in the past for efficient handling of the RTM
shift operations. Among them, memory request-reordering,
data swapping, preshifting and intelligent data, and instruction
placement have shown good promise [13], [29], [31], [34],
[35], [41]–[44]. Since the architectural optimizations add to
the design complexity of RTM controllers, software optimiza-
tions such as data placement and high-level transformations
are highly desirable but, unfortunately, less explored. To the
best of our knowledge, Khan et al. [18], [45] is the only work
where the authors explore manual loop and layout transfor-
mations to mitigate the number of RTM shifts for the tensor
contraction operations and give suggestions for code genera-
tion. However, no real efforts have been made to develop more
general and automatic compilation frameworks for RTM-based
systems.

The polyhedral model is vastly used for automatic
optimization/parallelization of programs [15], [46]–[49] and
is used in various source-to-source and IR-to-IR compilers,
e.g., Pluto [15], CHiLL [50], Polly [9], [51], GRAPHITE [52],
URUK [14], and the polyhedral extension of the IBM’s XL
compiler suite [53], and as underlying model for higher-
level domain-specific languages, e.g., in TeML [54] and
TensorComprehensions [55]. While most of these tools focus
on improving parallelism and temporal/spatial locality for
multicore architectures, some of them attempt to optimize
for more specific platforms, including to GPUs [56], [57],
FPGAs [58], memory hierarchy [14], [59], systolic arrays [60],
or application domains, such as stencils [61] and tensors [62].
In this work, we extend the polyhedral optimizer Polly, to

generate efficient codes for RTMs by maximizing successive
accesses to the same or nearby locations.

VI. CONCLUSION

We introduced RTM-specific program transformations in
the polyhedral compilation framework Polly to reduce the
amount of RTM shifts required by a program execution. The
shift optimization comes from reordering the memory accesses
and/or transforming the data layout in the RTM. We explain
how the schedule optimizer identifies potential optimization
targets and modifies the schedule in a way that eliminates
longer (overhead) shifts. In kernels where data dependencies
prohibit schedule transformations, we show how data layout
transformation can effectively reduce RTM shifts. We empir-
ically demonstrate that our optimizations effectively reduce
RTM shifts both with and without the Polly default affine
scheduler. However, when applied together, our optimizer not
only preserves the optimizations of the affine scheduler but
also exploits the optimizations it enables for RTMs. The jointly
optimized solution improves the RTM shifts by up to 85%
(average 41%), which improves the performance, and energy
consumption by an average of 17.9% and 39.8%, respec-
tively. We believe our framework will pave the way for RTMs
to go mainstream and attract the architectural community to
investigate hardware-software co-optimization for RTMs. Our
work contributes and fits within larger efforts to architect
hardware and software abstractions for emerging computing
systems [63].

REFERENCES

[1] J. F. Scott, Ferroelectric Memories, vol. 3. Heidelberg, Germany:
Springer, 2000.

[2] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[3] F. Hameed, A. A. Khan, and J. Castrillon, “Performance and energy-
efficient design of STT-RAM last-level cache,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 6, pp. 1059–1072, Jun. 2018.

[4] H. P. Wong et al., “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6,
pp. 1951–1970, Jun. 2012.

[5] S. Parkin and S.-H. Yang, “Memory on the racetrack,” Nat.
Nanotechnol., vol. 10, pp. 195–198, Mar. 2015.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

KHAN et al.: POLYHEDRAL COMPILATION FOR RACETRACK MEMORIES 3979

[6] K. Sudan, K. Rajamani, W. Huang, and J. B. Carter, “Tiered memory:
An iso-power memory architecture to address the memory power wall,”
IEEE Trans. Comput., vol. 61, no. 12, pp. 1697–1710, Dec. 2012.
[Online]. Available: https://doi.org/10.1109/TC.2012.119

[7] R. Bläsing et al., “Magnetic racetrack memory: From physics to the
cusp of applications within a decade,” Proc. IEEE, vol. 108, no. 8,
pp. 1303–1321, Aug. 2020.

[8] R. Venkatesan, S. G. Ramasubramanian, S. Venkataramani, K. Roy,
and A. Raghunathan, “STAG: Spintronic-tape architecture for GPGPU
cache hierarchies,” in Proc. 41st Annu. Int. Symp. Comput. Archit.,
Minneapolis, MN, USA, 2014, pp. 253–264.

[9] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N.
Pouchet, “Polly: Polyhedral optimization in LLVM,” in Proc. 1st Int.
Workshop Polyhedral Compilation Techn. (IMPACT), 2011.

[10] L.-N. Pouchet et al., (2012). Polybench: The Polyhedral Benchmark
Suite. [Online]. Available: http://www.cs.ucla.edu/pouchet/software/
polybench

[11] M. Baldauf, A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer,
and T. Reinhardt, “Operational convective-scale numerical weather
prediction with the cosmo model: Description and sensitivities,” Monthly
Weather Rev., vol. 139, no. 12, pp. 3887–3905, 2011.

[12] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy,
and A. Raghunathan, “TapeCache: A high density, energy efficient cache
based on domain wall memory,” in Proc. ACM/IEEE Int. Symp. Low
Power Electron. Design, New York, NY, USA, 2012, pp. 185–190.

[13] A. A. Khan, F. Hameed, R. Bläsing, and S. S. P. Parkin, “ShiftsReduce:
Minimizing shifts in racetrack memory 4.0,” ACM Trans. Archit. Code
Optim., vol. 16, no. 4, pp. 1–23, 2019.

[14] S. Girbal et al., “Semi-automatic composition of loop transforma-
tions for deep parallelism and memory hierarchies,” Int. J. Parallel
Program., vol. 34, no. 3, pp. 261–317, Jun. 2006. [Online]. Available:
https://doi.org/10.1007/s10766-006-0012-3

[15] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“A practical automatic polyhedral parallelizer and locality opti-
mizer,” in Proc. 29th ACM SIGPLAN Conf. Program. Lang. Design
Implement., New York, NY, USA, 2008, pp. 101–113. [Online].
Available: http://doi.acm.org/10.1145/1375581.1375595

[16] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen, “Schedule trees,”
in Proc. 4th Int. Workshop Polyhedral Compilation Techn., Vienna,
Austria, 2014, pp. 3202–3216.

[17] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in Proc. Int. Congr. Math. Softw. (ICMS), 2010, pp. 299–302.

[18] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon, “Optimizing ten-
sor contractions for embedded devices with racetrack memory scratch-
pads,” in Proc. 20th Int. Conf. Lang. Compilers Tools Embedded Syst.,
2019, pp. 5–18.

[19] O. Zinenko et al., “Modeling the conflicting demands of parallelism
and temporal/spatial locality in affine scheduling,” in Proc. 27th
Int. Conf. Compiler Construct., 2018, pp. 3–13. [Online]. Available:
https://doi.org/10.1145/3178372.3179507

[20] T. Henretty, R. Veras, F. Franchetti, L. Pouchet, J. Ramanujam, and
P. Sadayappan, “A stencil compiler for short-vector SIMD architectures,”
in Proc. Int. Conf. Supercomput., Jun. 2013, pp. 13–24.

[21] T. H. Dadzie, J. Lee, J. Kim, and H. Oh, “SA-SPM: An efficient compiler
for security aware scratchpad memory (invited paper),” in Proc. 20th
ACM SIGPLAN/SIGBED Int. Conf. Lang. Compilers Tools Embedded
Syst., 2019, pp. 57–69.

[22] S. Gueron, “A memory encryption engine suitable for general pur-
pose processors,” Cryptol. ePrint Archive, Lyon, France, Rep. 2016/204,
2016. [Online]. Available: https://eprint.iacr.org/2016/204

[23] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” AMD,
Santa Clara, CA, USA, White Paper, 2016.

[24] A. A. Khan, F. Hameed, R. Bläsing, S. Parkin, and J. Castrillon, “RTSim:
A cycle-accurate simulator for racetrack memories,” IEEE Comput.
Archit. Lett., vol. 18, no. 1, pp. 43–46, Jan.–Jun. 2019.

[25] S. Mittal, R. Wang, and J. Vetter, “DESTINY: A comprehensive tool
with 3D and multi-level cell memory modeling capability,” J. Low Power
Electron. Appl., vol. 7, no. 3, p. 23, 2017.

[26] Cosmo. Accessed: Jan. 6, 2020. [Online]. Available: http://www.cosmo-
model.org

[27] S. Verdoolaege, “Integer set library: Manual,” Rep., 2020. [Online].
Available: http://isl.gforge.inria.fr/manual.pdf

[28] Q. Hu, G. Sun, J. Shu, and C. Zhang, “Exploring main memory design
based on racetrack memory technology,” in Proc. 26th Ed. Great Lakes
Symp. VLSI, Boston, MA, USA, 2016, pp. 397–402.

[29] D. Wang, L. Ma, M. Zhang, J. An, H. H. Li, and Y. Chen, “Shift-
optimized energy-efficient racetrack-based main memory,” J. Circuits
Syst. Comput., vol. 27, no. 05, 2018, Art. no. 1850081.

[30] E. Park, S. Yoo, S. Lee, and H. Li, “Accelerating graph computation with
racetrack memory and pointer-assisted graph representation,” in Proc.
Design Autom. Test Eur. Conf. Exhibit. (DATE), Dresden, Germany,
Mar. 2014, pp. 1–4.

[31] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design
for ultra high density and low power consumption,” in Proc. 50th
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Austin, TX, USA,
May 2013, pp. 1–6.

[32] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones, “FusedCache: A natu-
rally inclusive, racetrack memory, dual-level private cache,” IEEE Trans.
Multi-Scale Comput. Syst., vol. 2, no. 2, pp. 69–82, Apr.–Jun. 2016.

[33] S. Wang et al., “Performance-centric register file design for GPUs using
racetrack memory,” in Proc. 21st Asia South Pac. Design Autom. Conf.
(ASP-DAC), Macau, China, Jan. 2016, pp. 25–30.

[34] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “An energy-efficient
GPGPU register file architecture using racetrack memory,” IEEE Trans.
Comput., vol. 66, no. 9, pp. 1478–1490, Sep. 2017.

[35] H. Mao, C. Zhang, G. Sun, and J. Shu, “Exploring data placement
in racetrack memory based scratchpad memory,” in Proc. IEEE Non
Volatile Memory Syst. Appl. Symp. (NVMSA), Hong Kong, China,
Aug. 2015, pp. 1–5.

[36] Z. Luo et al., “Current-driven magnetic domain-wall logic,” Nature,
vol. 579, no. 7798, pp. 214–218, 2020.

[37] Z. Chen, Q. Deng, N. Xiao, K. Pruhs, and Y. Zhang, “DWMAcc:
Accelerating shift-based CNNs with domain wall memories,” ACM
Trans. Embedded Comput. Syst., vol. 18, no. 5, pp. 1–19, 2019.

[38] G. Mappouras, A. Vahid, R. Calderbank, and D. J. Sorin, “GreenFlag:
Protecting 3D-racetrack memory from shift errors,” in Proc. IEEE/IFIP
Int. Conf. Depend. Syst. Netw. (DSN), Portland, OR, USA, 2019,
pp. 1–12.

[39] S. Ollivier, D. Kline, R. Kawsher, R. Melhem, S. Banja, and A. K. Jones,
“Leveraging transverse reads to correct alignment faults in domain wall
memories,” in Proc. 49th Annu. IEEE/IFIP Int. Conf. Depend. Syst.
Netw. (DSN), Portland, OR, USA, 2019, pp. 375–387.

[40] C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao, “Quantitative
modeling of racetrack memory, a tradeoff among area, performance,
and power,” in Proc. 20th Asia South Pac. Design Autom. Conf., Chiba,
Japan, Jan. 2015, pp. 100–105.

[41] E. Atoofian, “Reducing shift penalty in domain wall memory through
register locality,” in Proc. Int. Conf. Compilers Archit. Synth. Embedded
Syst., Amsterdam, The Netherlands, 2015, pp. 177–186.

[42] A. A. Khan, A. Goens, F. Hameed, and J. Castrillon, “Generalized data
placement strategies for racetrack memories,” in Proc. Design Autom.
Test Eur. Conf. (DATE), Grenoble, France, 2020, pp. 1502–1507.

[43] X. Chen, E. H. Sha, Q. Zhuge, C. J. Xue, W. Jiang, and Y. Wang,
“Efficient data placement for improving data access performance on
domain-wall memory,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 24, no. 10, pp. 3094–3104, Oct. 2016. [Online]. Available:
https://doi.org/10.1109/TVLSI.2016.2537400

[44] J. Multanen, P. Jääskeläinen, A. A. Khan, F. Hameed, and J. Castrillon,
“SHRIMP: Efficient instruction delivery with domain wall memory,” in
Proc. Int. Symp. Low Power Electron. Design, Lausanne, Switzerland,
Jul. 2019, pp. 1–6.

[45] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon, “Optimizing
tensor contractions for embedded devices with racetrack and dram mem-
ories,” ACM Trans. Embedded Comput. Syst., vol. 19, no. 6, pp. 44:1–
44:26, Aug. 2020. [Online]. Available: https://doi.org/10.1145/3396235

[46] P. Feautrier and C. Lengauer, “Polyhedron model,” in Encyclopedia of
Parallel Computing. Boston, MA, USA: Springer, 2011,pp. 1581–1592.

[47] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
I. One-dimensional time,” Int. J. Parallel Program., vol. 21, no. 5,
pp. 313–347, Oct. 1992.

[48] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
Part II. Multidimensional time,” Int. J. Parallel Program., vol. 21,
pp. 389–420, Jan. 1997.

[49] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien, “Loop parallelization
algorithms: From parallelism extraction to code generation,” Parallel
Comput., vol. 24, nos. 3–4, pp. 421–444, May 1998.

[50] C. Chen, J. Chame, and M. Hall, “CHiLL: A framework for composing
high-level loop transformations,” Dept. Comput. Sci., Univ. Southern
California, Los Angeles, CA, USA, Rep. 08-897, 2008.

[51] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly—Performing poly-
hedral optimizations on a low-level intermediate representation,” Parallel
Process. Lett., vol. 22, no. 4, 2012, Art. no. 1250010.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

3980 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

[52] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache,
“Graphite: Polyhedral analyses and optimizations for GCC,” in Proc.
GCC Developers Summit, 2006, p. 2006.

[53] L. Renganarayana, U. Bondhugula, S. Derisavi, A. E. Eichenberger,
and K. O’Bri, “Compact multi-dimensional kernel extraction for reg-
ister tiling,” in Proc. Conf. High Perform. Comput. Netw. Storage Anal.,
Portland, OR, USA, 2009, pp. 1–12.

[54] A. Susungi, N. A. Rink, A. Cohen, J. Castrillon, and C. Tadonki, “Meta-
programming for cross-domain tensor optimizations,” in Proc. 17th ACM
SIGPLAN Int. Conf. Gener. Program. Concepts Exp., 2018, pp. 79–92.

[55] N. Vasilache et al., “Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions,” 2018. [Online]. Available:
arXiv:1802.04730.

[56] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-
to-CUDA code generation for affine programs,” in Proc. Int. Conf.
Compiler Construct., 2010, pp. 244–263.

[57] S. Verdoolaege, J. C. Juega, J. I. Gómez, C. Tenllado, and F. Catthoor,
“Polyhedral parallel code generation for CUDA,” ACM Trans. Archit.
Code Optim., vol. 9, no. 4, p. 54, 2013.

[58] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-
based data reuse optimization for configurable computing,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2013, pp. 29–38.

[59] U. Bondhugula, “Compiling affine loop nests for distributed-memory
parallel architectures,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., Nov. 2013, pp. 1–12.

[60] J. Cong and J. Wang, “PolySA: Polyhedral-based systolic array auto-
compilation,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), San Diego, CA, USA, 2018, pp. 1–8.

[61] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computa-
tions to maximize parallelism,” in Proc. IEEE Int. Conf. High Perform.
Comput. Netw. Storage Anal. (SC’12), Salt Lake City, UT, USA, 2012,
pp. 1–11.

[62] R. Gareev, T. Grosser, and M. Kruse, “High-performance generalized
tensor operations: A compiler-oriented approach,” ACM Trans. Archit.
Code Optim., vol. 15, no. 3, p. 34, 2018.

[63] J. Castrillon et al., “A hardware/software stack for heterogeneous
systems,” IEEE Trans. Multi-Scale Comput. Syst., vol. 4, no. 3,
pp. 243–259, Jul.–Sep. 2018.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 01,2020 at 19:44:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

