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ABSTRACT
Lossless interconnection networks are omnipresent in high
performance computing systems, data centers and network-
on-chip architectures. Such networks require efficient and
deadlock-free routing functions to utilize the available hard-
ware. Topology-aware routing functions become increasingly
inapplicable, due to irregular topologies, which either are
irregular by design or as a result of hardware failures. Ex-
isting topology-agnostic routing methods either suffer from
poor load balancing or are not bounded in the number of
virtual channels needed to resolve deadlocks in the routing ta-
bles. We propose a novel topology-agnostic routing approach
which implicitly avoids deadlocks during the path calculation
instead of solving both problems separately. We present a
model implementation, called Nue1, of a destination-based
and oblivious routing function. Nue routing heuristically op-
timizes the load balancing while enforcing deadlock-freedom
without exceeding a given number of virtual channels, which
we demonstrate based on the InfiniBand architecture.
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1. INTRODUCTION
Today’s HPC and data center network architectures in-

creasingly embrace functions that enable a tighter interac-
tion between networking hardware and programming models.
The best example is Remote Direct Memory Access (RDMA)
that enables the programmer to directly instruct the network
interface to read and write remote memory. This functional-
ity commonly requires reliable hardware transport between
sender and receiver, which can be achieved using iWARP or
more recently using lossless Layer 2 network protocols. Such
advanced functions have been prevalent in the high-speed net-
working area, such as InfiniBand [18] or Cray’s Cascade [9].
Ethernet was recently extended with Priority Flow Control
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Figure 1: Simulated throughput for an all-to-all op-
eration and required VCs for deadlock-freedom for
different routing algorithms (hatched bars indicate
that only 1 VC is used) — Simulated network: 4x4x3
3D-torus, 4 terminals per switch, 1 faulty switch,
QDR InfiniBand, maximum of 4 VCs available

at Layer 2 to enable the reliable transport needed for RDMA.
Indeed, the RoCE protocol enables RDMA for Ethernet.

The downside of lossless Layer 2 networking is that the
needed protocols can create deadlock situations [4], where a
group of packets cannot be forwarded because of unavailable
resources, such as buffers or channels, and the group is
circularly depended on each other. Such deadlocks (DL) can
be avoided algorithmically for many regular topologies, e.g.,
by restricting the routing to use only a subset of all available
channel dependencies, as it is implemented by dimension-
order routing (DOR) [26]. Another well-known technique
for HPC and on-chip networks (NoC) is the use of virtual
channels (VCs, different sets of buffers) to break deadlocks
in arbitrary topologies and routing functions [1,30,32]. Dally
et al. [6] described this method of conditionally switching
between virtual channels along a route, so called virtual
channel transition, to obtain a DL-free routing. For example,
a k-ary n-cube network needs two VCs if virtual channel
transition is possible. However, not all network technologies,
e.g., InfiniBand, support this method, in which case the
routing functions, such as the layered shortest path routing
(LASH) [32], can combine VCs into virtual layers—imagine
multiple virtual copies of the actual network—and assign all
routes to different layers. Hence, the routing is DL-free, if
the combination of routes within each layer is deadlock-free.

Yet, all these concepts have limitations: (1) Topology-
aware routings assume perfect topologies and often do not
support switch/link failures [7]. (2) Cycle-avoiding routings
often cannot balance routes and thus limit global band-
width [28]. (3) Routings based on virtual channel isolation
fail when the required number of VCs is not available [11].



Assume, for example, a 4x4x3 InfiniBand torus network
with four terminals per switch and one failed switch (i.e., 47
switches in total) and network support for four VCs. The
throughput for various deadlock-free routing strategies, as
implemented in InfiniBand’s subnet manager, is shown in
Fig. 1a, provided that all terminals participate in an all-to-
all send operation with 2 KiB messages. Fig. 1b shows the
needed number of VCs for these deadlock-free routing algo-
rithms. The topology-aware Torus-2QoS routing [25] enables
a high throughput within the virtual channel limit, but will
fail if a second switch failure occurs in the same torus ring.
Up*/Down* routing and LASH [32] are inefficient in compar-
ison to Torus-2QoS. The throughput of the topology-agnostic
routing DFSSSP [8] is in-between, however the deadlock-free
single-source shortest-path routing (DFSSSP) exceeds the
given VC limit and is therefore inapplicable. The achiev-
able throughput while using our new routing approach, Nue,
for the 4x4x3 torus is included in Fig. 1a for every number
of VCs within the 4-VC limit, showing Nue’s resiliency to
network faults and ability to offer competitive throughput.

We now describe the underlying idea for Nue routing, i.e., a
routing function that overcomes all mentioned limitations (1)–
(3), meaning the routing is capable of distributing the paths
across the network to increase the throughput. Furthermore,
the objectives for our routing function should be to work on
arbitrary topologies with all possible numbers of available
virtual channels, including network technologies without sup-
port for VCs. We assume destination-based routing as is
used in many of today’s technologies, e.g., InfiniBand.

2. DEFINITIONS AND ASSUMPTIONS
We define a network as a multigraph assuming that each

pair of network devices can be connected with multiple duplex
channels (or links). In this regard, all duplex channels of the
interconnection network are logically split into two directed
channels of opposite direction, see Fig. 2a. Furthermore, we
assume that the channel capacity is uniform and constant over
time. If exact device information is required, e.g., for figures,
then we use ordered pairs (nx, ny) or cnx,ny , otherwise a
simpler ci notation is used for channels.

Definition 1 (Interconnection Network). An interconnec-
tion network I := G(N,C) is a connected multigraph with
the node set N and multiset C of directed (multi-)channels.
We call nx ∈ N a terminal, if and only if it exists exactly
one ny with (ny, nx) ∈ C, otherwise nx is called a switch.

Definition 2 (Cycle-free Route). A route (or path) Pnx,ny

of length h from node nx to ny in I = G(N,C) is defined
as a sequence of channels (c1, . . . , ch) =: Pnx,ny under the
condition that {c1, . . . , ch} ⊆ C, c1 := (nx, ·), ch := (·, ny),
and if cq = (·, nz) then cq+1 = (nz, ·) for all 1 < q < h.
Pnx,ny is considered to be cycle-free, if from p 6= q, with
1 ≤ p, q ≤ h and cp = (·, nu), cq = (·, nv), it follows that
nu 6= nv. Let sPnx,ny denote a shortest path from nx to ny.

Definition 3 (Destination-based and Cycle-free Routing). A
routing function R : C×N → C for a network I := G(N,C)
assigns the next channel cq+1 of the route depending on the
current channel cq and the destination node ny. For multi-
graphs, we assume that the next channel cq+1 is unique among
the existing parallel channels of a multi-channel. Further-
more, a routing R is considered to be destination-based if
the channel cq+1 is unique (denoted by the ∃! sign) at each
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Figure 2: Using a shortest-path, counter-clockwise
routing for network I (2a) induces the channel de-
pendency graph D (2b); dashed channel dependen-
cies in D form a potential deadlock (induced by
paths, with h = 2, using dashed channels of I)

node, i.e., ∀nx ∈ N ∃!c ∈ C : R
(
(·, nx), ny

)
= c. The rout-

ing R is cycle-free if all paths induced by R are cycle-free.

Although our definition of the routing function is equivalent
to R′ : N × N → C, we will use R to express channel
dependencies later on. We consider a routing function for a
given network I to be valid, if and only if (iff) the routing
has these three properties: cycle-free, destination-based, and
deadlock-free, so that the routing is applicable to InfiniBand,
Ethernet, and many NoC designs. Especially, the InfiniBand
standard demands the use of DL-free routing algorithms, see
Section C14-62.1.2 [18]. Dally et al. [6] postulate Theorem 1,
which sets the necessary and sufficient condition for the
deadlock-freedom of a destination-based routing function.

Theorem 1. A routing function R for an interconnection
network I is deadlock-free if and only if there are no cycles
in the corresponding channel dependency graph.

The channel dependency graph (CDG) is induced by the
used routing function R for a given network I as follows:

Definition 4 (Channel Dependency Graph). The channel
dependency graph for a given network I and routing func-
tion R is defined as a directed graph D := G(C,E) whose
node set consists of the channel set of I. The edge set of D,
denoted by ordered channel pairs (·, ·), is induced by the rout-
ing function, i.e., (cp, cq) ∈ E iff ∃ny ∈ N : R(cp, ny) = cq.

Fig. 2b shows the CDG for the network shown in Fig. 2a
assuming a shortest-path, counter-clockwise routing function
is used (with “shortest-path” as primary path selection crite-
rion). If VCs are supported, but no VC transition, then the
alternative way to achieve DL-freedom is the use of virtual
channels and to combine them into virtual layers, as men-
tioned in Section 1. Routes are then assigned to individual
layers, so that all routes within one layer induce an acyclic
CDG. This technique is used by DFSSSP [8] and LASH [32]
routing (among others). However, assuming shortest-path
routing, then the minimum number of virtual layers required
to achieve deadlock-freedom can exceed the available number
of virtual layers, see Section 5.3, and an optimal assignment
of routes to layers is an NP-complete problem [8].

Definition 5 (Virtual Layer). Assume each network channel

c ∈ C can be split into k virtual channels {cvirt
1 , . . . , cvirt

k },
with k ∈ N, then we can determine the i-th virtual layer
Li := G(N,Ci) of the interconnection network I = G(N,C)

with Ci :=
{
cvirt
i | cvirt

i ∈ c for c ∈ C
}

. The network I and
virtual layer Li are identical for k = 1.



Our routing algorithm, as we explain hereafter, will use
a similar approach, i.e., using virtual layers for deadlock-
freedom, but to the best of our knowledge is the first routing
function which can be used for every topology and any given
number of virtual channels, including k = 1.

3. ROUTING IN A DEPENDENCY GRAPH
The current best practice, e.g., as implemented by DFSSSP

and LASH, is to decouple the two problems of path creation
and deadlock-free assignment to virtual channels. The reason
is that both problems require a different graph representation
of the network and routes. The deadlock-free assignment
needs the CDG, an abstract graph induced by the routes,
while the route calculation has to take place beforehand and
is usually performed on a graph identical to the network.
Assume, we can combine the information required to solve
both problems within one graph, then we can impose routing
restrictions to the path creation on-demand, because the
effects of a partial or full path on the CDG can be checked si-
multaneously. Hence, we can avoid closing cycles in the CDG
while calculating the paths instead of breaking the cycles
later. Assume, this new graph represents one virtual layer,
then a graph search algorithm, such as Dijkstra’s algorithm,
can traverse the graph and construct routes from all nodes
to all other network nodes and the routes are deadlock-free
within this layer. The type of graph search and the informa-
tion assigned to this graph influence the resulting routes, e.g.,
source-routing or destination-based routing could be possi-
ble. Furthermore, assuming the used network technology
supports an arbitrary, but fixed, number of virtual channels,
k > 1, then individual destination nodes can be assigned to
different virtual layers. As a consequence, the graph search
algorithm within one layer is able to calculate DL-free routes
for all source nodes to the destination nodes assigned to this
virtual layer. Therefore, all routes in all virtual layers are
deadlock-free without exceeding the VC constraint.

4. NUE ROUTING
In the following, we will show how to construct the com-

plete channel dependency graph. Based on this graph, we
will develop our deadlock-free, oblivious, and destination-
based Nue routing as one example for the general idea of
routing within the dependency graph.

4.1 Complete Channel Dependency Graph
To create paths within the CDG, we need a complete

representation of all possible channel dependencies, instead
of a graph induced by a specific routing. Therefore, we define
the complete CDG using the adjacency of channels as follows:

Definition 6 (Complete Channel Dependency Graph). Let
I = G(N,C) be a network according to Definition 1, then the
complete CDG D := G(C,E), with E ⊆ C × C, is defined
by ∀(nx, ny), (ny, nz) ∈ C, nx 6= nz :

(
(nx, ny), (ny, nz)

)
∈ E.

We define that the graph D is cycle-free, if D ⊆ D is acyclic,
for any CDG D induced by a routing function according to
Definition 4. Assuming, the network technology supports
k > 1 VCs, then the definition of the i-th complete channel
dependency graph Di := G(Ci, Ei), with Ei ⊆ Ci × Ci, is
equivalent to the definition of D.

The CDG D induced by a routing function does not have to
be stored separately, and can be saved indirectly by assigning
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Figure 3: Complete CDG D for the 5-ring network
with shortcut, see Fig. 2a, assuming k = 1; all chan-
nels are in unused state (⇒ no routing applied, yet)

states to the vertices, i.e., channels of I, and edges of the
complete CDG D. These states are unused, used, or blocked,
whereby the blocked state is only used for edges. We consider
e ∈ E to be used iff e ∈ E, i.e., e is induced by a routing R.
We mark an edge e ∈ E as blocked iff G(C,E ∪ {e}) forms a
cyclic graph for an acyclic CDG D = G(C,E). Fig. 3 shows
the complete CDG for the 5-node ring network with shortcut,
previously shown in Fig. 2a, for k = 1. Each vertex/edge of
D is in the unused state, i.e., no routing has been applied.

4.2 Escape Paths
Cherkasova et al. [3] made an important observation: An

incremental algorithm calculating paths and adding routing
restrictions at the same time, i.e., prohibiting the assignment
R(cq, ·) = cq+1 for any destination node, can lead to an im-
passe. Hence, further progress in the algorithm is impossible
due to previously added restrictions. While Cherkasova et
al. [3] report that this state was observed only rarely for
their investigated networks, our experiments show that it is
a permanent problem for larger networks.

For adaptive routing algorithms it is common to avoid
deadlocks by utilizing a separate set of buffers, similar to a
virtual layer, which acts as “escape paths” [4, 13]. Within
this layer a fixed deadlock-free routing, such as Up*/Down*,
is employed, and switches transfer a blocked packet into the
escape paths for the remainder of the route to its destination.

We adapt the concept of escape paths2 for our oblivious
routing to ensure that at least one valid path—not necessarily
shortest—between every given node pair exists, which does
not induce a cycle in the CDG. The disadvantages of fixed
and predefined escape paths are the imposed channel depen-
dencies which cannot act as routing restrictions. Meaning,
Nue assigns the used state to a subset of vertices and edges
of D, even so these are not necessarily induced by R. Escape
paths inevitably serve as potential imaginary paths which
influence the generation and balancing of real paths by Nue.
Therefore, the escape paths should induce as few channel
dependencies as possible while minimizing the average path
length across the escape paths. We are using a spanning tree
of I to define the escape paths in D, since a spanning tree
does not induce a cyclic CDG while minimizing the number
of channels required to connect all nodes in I.

Definition 7 (Escape Paths). Let Nd ⊆ N be a set of
destination nodes for Nue within the network I = G(N,C)
and let S = G(N,Cs), with Cs ⊆ C, be a spanning tree

2
Not in the sense of a separate set of buffers, but available fall back

paths in layer Li.
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Figure 5: Initial channel dependencies (CDs) of the
escape paths shown for the node set Nd

i = {n1, n2, n3}
and root node n5 (left) or root node n2 (right) of the
spanning tree (marked as black channels)

of network I with root node nr ∈ N . Then, the escape
paths Ds := G(Cs, Es) are a subgraph of D induced by a
routing Rs : N ×Nd → Cs. Assuming k > 1, then Ds

i for
virtual layer Li and root nr,i is defined equivalently, with the
substitution of Cs by Csi ⊆ Ci.

The term “spanning tree” in this context refers to the
originally undirected duplex channels of I, and therefore
(nx, ny) ∈ Cs =⇒ (ny, nx) ∈ Cs. Evidently, all cycle-free,
destination-based routings Rs induce the same escape paths
Ds or Ds

i , respectively, for a given spanning tree. Fig. 4
shows the escape paths marked in the complete CDG for
Nd = N when n5 is used as the root node for S.

The escape paths for our Nue routing have two functions:
The first, as mentioned above, is to define an initial set of
channel dependencies, which once added cannot be removed
to resolve cyclic states in the CDG. Therefore, the escape
paths ensure a deadlock-free path from all nodes in N to all
nodes in Nd

i within virtual layer Li. Hence, escape paths for
each layer are needed. Despite of having escape paths Ds

i ,
Nue can end up in an impasse due to the iterative nature of
the path creation, as we will see in Sections 4.6.2 and 4.6.3.
Therefore, secondly and more importantly, the escape paths
are to be actively used by Nue after reaching an unsolvable
impasse for a destination node, see Section 4.6.2.

4.3 Choosing Root Node for the Spanning Tree
Nue routing is using escape paths when encountering an

impasse, illustrated in Section 4.6.2. Therefore, Nue should
ensure that the paths in S are as short as possible. This will
reduce latency and oversubscription of individual channels.

AssumingNd
i ⊂ N , then an observation is, that the number

of initial channel dependencies derived from the escape paths
depends on the location of the root node as well. To illustrate
this property, we use our previously investigated 5-node ring
with shortcut, see Fig. 2a. If n5 is chosen as root node, since
it allows for the shortest average path length in the spanning
tree, then the escape paths for Nd

i = {n1, n2, n3}, as speci-
fied in Definition 7, induce five initial channel dependencies.
However, if nr = n2 is chosen instead, then we only have
four initial channel dependencies, as shown in Fig. 5.

As a consequence, we propose to use a root node which
is the most central with respect to the subset Nd

i ⊂ N to
reduce the initial channel dependencies within virtual layer Li.
Freeman et al. [12] introduced the metric of betweenness
centrality, which is ideal for our purpose to determine the
root node for the spanning tree. If we assume a graph
G(N,C), then the betweenness centrality CB(n) for a node
n ∈ N is defined via the absolute number of shortest paths
between the two nodes s and t, called σst, and the number
of shortest paths σst(n) which include node n, i.e.,

CB(n) :=
∑

s 6=n 6=t∈N

σst(n)

σst

Brandes et al. [2] developed an algorithm to compute the
betweenness centrality of every node in the graph. The
algorithm for unweighted graphs has a O(|N | · |C|) time
complexity. Unfortunately, the algorithm is not directly
applicable to our problem, since we are seeking the most
central node with respect to the subset Nd

i ⊂ N to reduce
the initial channel dependencies of the escape paths towards
nodes of Nd

i . To adapt our problem, we calculate the convex
subgraph for the node set Nd

i , and apply Brandes’ algorithm
on the convex subgraph.

Definition 8 (Convex Subgraph). The convex subgraph
Hi := G(NH

i , C
H
i ) for a set Nd

i includes all nodes of Nd
i as

well as some nodes of N \Nd
i , which are intermediate nodes

of the shortest paths sP·,· between nodes of Nd
i . Therefore,

NH
i := {n ∈ N | ∀nx, ny ∈ Nd

i : n = nx ∨ (·, n) ∈ sPnx,ny}
and the edge set CHi of the convex subgraph is defined analo-
gously.

The fact that our networks are represented by an un-
weighted graph allows us to compute the convex subgraph
with a time complexity of O

(
|Nd
i |·(|N |+|C|)

)
with a breadth-

first search (forward step) and an inverse traversal of the
graph to find all shortest paths (backward step).

After we compute the convex subgraph Hi, Brandes’ algo-
rithm is executed on Hi instead of I to find nr,i ∈ NH

i which
maximizes the betweenness centrality CB(n) w.r.t. Nd

i . This
node will be used as the root node of the spanning tree for the
escape paths from all nodes towards the destination nodes
in Nd

i . As a remark, for k = 1 Nue assigns all destination
nodes Nd

i to one virtual layer, i.e., it follows that H1 = I
and Brandes’ algorithm can be executed directly on I.

4.4 Dijkstra’s Algorithm for the complete CDG
Domke et al. [7, 8] and Hoefler et al. [17] showed the effec-

tiveness, in terms of balancing the paths across the available
channels, of a routing algorithm based on Dijkstra’s single-
source shortest-path algorithm. Their modified Dijkstra
algorithm, using a Fibonacci heap to lower the time com-
plexity and extended to work on multigraphs, is combined



Algorithm 1: Dijkstra’s Algorithm within D

Input: I = G(N,C), D = G(C,E), source n0 ∈ N

Result: Pny,n0
for all ny ∈ N (and D is cycle-free)

1 foreach node n ∈ N do
2 n.distance←∞
3 n.usedChannel← ∅
4 foreach channel c ∈ C do
5 c.distance←∞

/* Need source channel c0 to start Dijkstra’s algorithm: if
n0 is terminal then use unique (n0, ·); if n0 is switch

then D has multiple (n0, ·) => (∅, n0) connects to all */
6 if n0 is switch then c0 ← (∅, n0) else c0 ← (n0, ·)
7 n0.distance← 0
8 c0.distance← 0
9 FibonacciHeap Q← {c0}

10 while Q 6= ∅ do
11 cp ← Q.findMin()

12 foreach (cp, cq) ∈ E with (cp, cq).state 6= blocked do
// Let ncq ∈ N be the tail of directed channel cq

13 if cp.distance + cq.weight < ncq .distance then

14 (cp, cq).state← used // modifies D

15 if D is cycle-free (see Algorithm 3) then
16 if ncq .usedChannel 6= ∅ then
17 Q.remove(ncq .usedChannel)

18 Q.add(cq)
19 cq.distance← cp.distance + cq.weight
20 ncq .distance← cp.distance + cq.weight

21 ncq .usedChannel← cq
22 else
23 (cp, cq).state← blocked

// Optimizations are explained in Sections 4.6.2/4.6.3

24 if n0 is switch then

25 remove fake channel c0 from D and (c0, (n0, ·)) from E

with positive weight updates for the used channels after all
paths to one destination node are computed.

We use a similar approach, but within the complete CDGD
or Di, respectively. For convenience, we describe Algorithm 1
for D only, but it can easily be extended for Di. Algorithm 1
computes shortest paths from one source node n0 ∈ N to all
other nodes in the complete CDG while complying to the
cycle-free constraint. Meaning, these paths are not neces-
sarily shortest paths w.r.t. the actual network I. Following
the paths in opposite direction along the used channels, i.e.,
nodes of D, results in the paths for the destination-based rout-
ing. Nue routing initializes and updates the channel weights
similar to DFSSSP [8]. However, the fact that channels are
the vertices of D changes the computation, see line 13, and
weights are stored at the adjacent channel instead of the edge
between two channels. The advantage of our approach is
that channel dependencies are directly considered, see line 15,
and routing restrictions can be identified instantaneously, as
outlined in Section 3. Therefore, paths do not have to be
recomputed to avoid the routing restriction afterwards, as it
is the case with smart routing [3], for example.

4.5 Nue Routing Function
Combining the knowledge of Section 4.1–4.4 into one rout-

ing function, see Algorithm 2, allows us to achieve our objec-
tives, i.e., to be able to balance the paths globally while not
exceeding a given number of VCs, k ≥ 1, used for deadlock-
freedom. In the first step, Nue routing partitions the nodes
of the network I into k disjoint subsets, Nd

1 , . . . , N
d
k . Each

subset Nd
i will denote a set of destinations for calculated

paths, i.e., P·,n for n ∈ Nd
i , within virtual layer Li. While the

exact partitioning of N will not influence whether Nue can

Algorithm 2: Nue routing calculates all paths within a
network I for a given number of virtual channels k ≥ 1

Input: I = G(N,C), k ∈ N
Result: Path Pnx,ny for all nx, ny ∈ N

1 Partition N into k disjoint subsets Nd
1 , . . . , N

d
k of destinations

2 foreach Virtual layer Li with i ∈ {1, . . . , k} do
// Check attached comments for details about each step

3 Select a subset of nodes Nd
i ⊆ N for virtual layer Li

4 Create a convex subgraph Hi for Nd
i // Section 4.3

5 Identify central nr,i ∈ NH
i of Hi // Section 4.3

6 Create a new complete CDG Di // Section 4.1
7 Define escape paths Ds

i for root nr,i // Section 4.2

8 foreach Node n ∈ Nd
i do

9 Identify deadlock-free paths P·,n // Section 4.4
10 Store these paths, e.g., in forwarding tables

11 Update channel weights in Di for these paths

calculate deadlock-free routes for I or not, the partitioning
affects the path balancing. Nue routing uses a multilevel
k-way partitioning algorithm [19] with O(|C|) time complex-
ity to partition the network I. Moreover, we implemented a
random partitioning and partial clustering, i.e., all terminals
connected to a switch are assigned to the same partition.
However, Nue with the multilevel k-way partitioning out-
performed the other two partitioning algorithms w.r.t. the
evaluations carried out in Section 5. An optimal partitioning
algorithm, i.e., a partitioning which results in a maximized
path balancing and which minimizes the edge forwarding
indices for the switches, is beyond the scope of this paper
and requires further research. For future versions of Nue,
we envision improved (optimal) partitioning algorithms that
result in an even better path balancing.

The node set Nd
i is used to calculate a convex subgraph Hi.

Brandes’ algorithm is executed on Hi to determine the be-
tweenness centrality for each node of Hi ensuring the selection
of an appropriate root node nr,i for the escape paths, see Sec-
tion 4.3 for more details. After creating a complete CDG Di

for virtual layer Li, which complies to Definition 6, Nue
routing determines the escape paths Ds

i . The acyclic escape
paths are derived from a spanning tree rooted at nr,i accord-
ing to Definition 7, i.e., the channels Csi and edges Esi are
changed into the used state. This completes the initialization
phase of the complete CDG Di to perform the graph search
algorithm within Di with our modified Dijkstra algorithm,
see Algorithm 1. Each node of Nd

i is used as a source for
Algorithm 1. The subsequent weight update for the used
channels aims for an improved global balancing of the paths.

4.6 Optimizations for Nue Routing

4.6.1 Numbering of Subgraphs and Cycle Search
Algorithm 1 has an O(|Ci| · log |Ci|+ |Ei|) time complexity,

if applied on virtual layer Li, and if the search for cycles in Di

is omitted. However, Algorithm 1 potentially needs to check
Di for cycles every time the state of an edge (cp, cq) = e ∈ Ei
changes, see line 15. The time complexity of each full cycle
search in Di = G(Ci, Ei) is O(|Ci|+ |Ei|).

If we can distinguish between vertex-disjoint, used sub-
graphs of Di, induced by a routing R as explained in Sec-
tion 4.1, then it is possible to avoid a cycle search by applying
memorization, since connecting two disjoint, acyclic, and used
subgraphs with an used edge creates a new acyclic subgraph.
Therefore, we incorporate an identification number ω for



used and cycle-free subgraphs of Di, which is an extension
of the three states we utilized before, see Section 4.1. The
function ω : Ci ∪ Ei → Z+

0 ∪ {−1}, with

ω(x) =


−1 if Di ∪ x form cycle in Di, i.e., x is blocked ,

0 if x 6∈ Di ∧ x 6∈ Ds
i , i.e., x is unused ,

≥ 1 if x is in the used state

is used to identify the vertex-disjoint, cycle-free subgraphs
and blocked edges, i.e., ω(e) = −1. An example is shown
in Fig. 6a with ω = 1 pointing to the escape paths of the
complete CDG D, i.e., ω(Cs ∪Es) = 1 for Ds = G(Cs, Es)
assuming k = 1.

The advantage of this is to identify conditions during the
routing with Dijkstra’s algorithm where a cycle search is
needed or can be omitted. Hence, at node cp ∈ C of the
complete CDG with assigned ω(cp) ≥ 1 and adjacent node
cq ∈ C, with (cp, cq) =: e ∈ E, there are four possible
conditions and three of them do not require a cycle search:

(a) ω(e) = −1 =⇒ no cycle search needed, because the
result is known already (these edges are ignored by the
conditional loop in line 12 of Algorithm 1);

(b) ω(e) ≥ 1 =⇒ ω(cp) = ω(cq) = ω(e) =⇒ no
cycle search needed, because e was used before and is
therefore part of an acyclic subgraph;

(c) ω(e) = 0 ∧ ω(cp) 6= ω(cq) =⇒ no cycle search needed,
because directed edge e connects two disjoint acyclic
subgraphs and therefore cannot close a cycle;

(d) ω(e) = 0 ∧ ω(cp) = ω(cq) =⇒ cycle search is needed,
because e adds an used edge in an acyclic subgraph
and might induce a cycle.

Algorithm 3 shows the handling of these conditions, inclu-
sive the performed cycle search with a depth-first search (DFS).
For simplicity, the algorithm shows the procedure for D, i.e.,
k = 1. The depth-first search is only performed within a
selected subgraph of D identified by ω(cp). Since this sub-
graph is acyclic without (cp, cq), this edge must be part of
a new cycle if it exists. Therefore, one depth-first search
starting from cq and searching for cp is sufficient. Hence, Nue
potentially omits to traverse parts of the subgraph, which
leads to a more efficient algorithm.

We will illustrate the conditions (b) to (d) with our previ-
ously investigated example of the ring topology with shortcut
for k = 1. Initially, we assign ω = 1 to the escape paths
identifying one cycle-free subgraph. Assume, we start the
first routing step with Algorithm 1 at node cn1,n2 and assign
ω(cn1,n2) = 2 to it, which will identify the second used and
cycle-free subgraph of D, as shown in Fig. 6a. Node cn1,n2

has only one adjacent node cn2,n3 available via an unused
directed edge. Since ω(cn1,n2) 6= ω(cn2,n3) we can omit a
cycle search, see condition (c). According to lines five to
eight of Algorithm 3, both subgraphs, with ω = 1 and ω = 2,
are merged into one acyclic subgraph with ω = 2. Now, the
adjacent nodes of cn2,n3 are cn3,n5 and cn3,n4 whereby the
conditions (b) and (c) apply, respectively. Assuming, Algo-
rithm 1 considers node cn3,n4 next, then the only available
adjacent node is cn4,n5 , which results in condition (d), where
a depth-first search is needed. A DFS from cn4,n5 for node
cn3,n4 checks a total of three nodes, i.e., cn5,n1 , cn5,n3 , and
cn3,n2 . Since the starting node is not found, it is possible to
use (cn3,n4 , cn4,n5) without closing a cycle. The intermediate
state of D during Algorithm 1, after these steps have been
performed, is shown in Fig. 6b.

Algorithm 3: Search for cyclic used subgraphs in D

Input: D = G(C,E), channels cp, cq ∈ C
Result: true if a cycle was found; false otherwise

1 if ω(cp, cq) = −1 then
2 return true // State described in condition (a )
3 else if ω(cp, cq) ≥ 1 then
4 return false // State described in condition (b )
5 else if ω(cp) 6= ω(cq) then

/* Merge two disjoint subgraphs */
6 if ω(cq) = 0 then ω(q)← ω(cp) and return false

7 foreach x ∈ C ∪ E, with ω(x) = ω(cq) do
8 ω(x)← ω(cp)

9 return false // State described in condition (c )

10 else
/* Perform depth-first search for cp in subgraph G with

ω(G) = ω(cp) starting from cq, see condition (d ) */

11 if the D.DFS(cq, ω(cp)) does not find cp then
12 ω(cp, cq)← ω(cp)

13 foreach x ∈ C ∪ E, with ω(x) = ω(cq) 6= 0 do
14 ω(x)← ω(cp)

15 ω(cq)← ω(cp)
16 return false

17 else
18 ω(cp, cq)← −1
19 return true
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Figure 6: State change of D after five steps with Al-
gorithm 1, starting from cn1,n2 ; Fig. 6a: initial state
(line 14) before the while loop is executed; Fig. 6b:
state of D after five iterations of the loop

4.6.2 Solving Impasses for Isolated Nodes/Clusters
The approach of either randomly removing channel de-

pendencies, as explained in Section 4.2 and mentioned by
Cherkasova et al. [3], can lead to impasses during an iter-
ative routing algorithm. Incrementally calculating routes
and placing routing restrictions on-demand, as we do, can
lead to similar impasses. Meaning, creating isolated parts
of the network, we call them islands, where no path can be
assigned to without creating a cycle in the CDG, based on
previously calculated routes for other destinations. Even the
escape paths, as introduced in Section 4.2, for our iterative,
destination-based routing function cannot prevent impasses.

To illustrate the problem, we consider a large network I,
with a small subnetwork I∗ connected as a binary tree, as
shown in Fig. 7a, and k = 1. The subgraph of the com-
plete CDG D for the relevant parts of the network, i.e.,
for I∗, is shown in Fig. 7b. Assume, our iterative algorithm
has calculated all routes for i− 1 destinations and is at an
intermediate step to calculate the routes towards the ith

destination. Therefore, parts of D will have ω = i assigned
to it, i.e., ω = 1 for the escape paths plus i− 1 destinations.
Algorithm 1 reaches n3 and n5 on the shortest path via the
channels cn1,n3 and cn7,n5 , respectively. Due to previous
routing decisions, the channel dependencies (cn1,n3 , cn3,n4)
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Figure 7: Impasse of Algorithm 1 to reach n4 based
on previously placed routing restrictions for chan-
nels dependencies (cn1,n3 , cn3,n4) and (cn7,n5 , cn5,n4),
which are shown as crossed out edges in I∗ and D

and (cn7,n5 , cn5,n4) are in the blocked state, as illustrated by
the crossed out edges. Hence, the routing algorithm reached
an impasse and cannot calculate valid routes for node n4.

There are multiple options to solve the impasse, we will
list three of them in the following. The easiest among them
is to simply fall back to the escape paths for the entire
routing step, i.e., all routes to one specific destination node
will use the escape paths instead of the paths calculated by
Algorithm 1. Remember, falling back to the escape path for
only a subset of the paths to one destination can violate the
destination-based property of Nue. The first option is the
least preferred, because impasses happen regularly, hence
the escape paths will be overloaded with routes.

Another option is a backtracking algorithm starting from
the current intermediate state of Nue routing and revert
previous decisions about chosen paths. However, this means
that potentially all previous chosen (partial) paths to the
current destination have to be changed, due to the channel
dependencies. This results in a brute-force algorithm, be-
cause the algorithm has no knowledge which “wrong decision”
in the beginning leads to the impasse. The method would
guarantee a solution, since at least one valid solution, i.e.,
the escape paths, exists, but it greatly increases the runtime.

We propose to use a local backtracking algorithm, as the
third option, whereby we check only the surrounding nodes
of distance of 2 hops for alternative routes to the island. This
can be accomplished both time- and memory-efficient3. If
no alternative path can be found, which happens less fre-
quent, then Nue falls back to the escape paths as described
in the first option. So, instead of having Algorithm 1 to
overwrite the used channel, see line 21, we store the used
channels in a stack. Hence, the stack4 of valid alternatives,
potentially using a longer path, to reach a certain node are
stored and is accessible in a backtracking step. Continuing
the example from Fig. 7: If Algorithm 1 reaches the impasse
at node n4, then it checks the stack of alternative routes
to the nodes n3 and n5, and determines whether or not
these can be used to reach n4. For example, an alternative
path to n3, stored in the stack, is to use channel cn2,n3 . As
Fig. 7b illustrates (upper right corner), the channels cn2,n3

and cn3,n4 , and the edge between them, already belong to
the same acyclic subgraph identified by ω = i. Therefore,
using the channel dependency (cn2,n3 , cn3,n4) is a valid al-

3
The detailed algorithms for the optimizations explained in Sec-

tions 4.6.2 and 4.6.3 are not needed to understand the underlaying
concept, and are therefore omitted.
4
For simplicity, the handling of the stack in Algorithm 1 is omitted.
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Figure 8: The states of the channel dependency
graph D, of the subnetwork I∗ of Fig. 7a are shown;
Fig. 8a shows the state after solving the island prob-
lem for n4; Fig. 8b highlights the change to D when
n4 is used as a shortcut to reach n5

ternative for our modified Dijkstra algorithm to reach n4. If
multiple valid alternatives exist, then Nue selects the shortest
among them—w.r.t. the weight/distance parameters of the
channels. After a valid alternative is found for one island
node, Algorithm 1 continues to operate as before to ensure
that paths into clusters of island nodes are calculated.

4.6.3 Using Formerly Isolated Nodes as Shortcut
In the previous section, we explained how to use a local

backtracking to solve routing impasses and how to find paths
into island nodes/clusters. Furthermore, these island nodes
can be used to shorten the distance to previously discovered
nodes. For instance, assume, Algorithm 1 reaches an impasse
for the network presented in Fig. 7a and the algorithm cannot
find a path to node n4, as described in Section 4.6.2. However,
the nodes n3 and n5 have already been discovered and have a
certain distance from the source node of the current routing
step performed with Algorithm 1. Assume, the distance of
node n3 from the current source node is six hops and the
distance of n5 is nine hops when Algorithm 1 reaches the
impasse. The local backtracking algorithm, see Section 4.6.2,
enables a valid path to n4 via n3. Node n4 can now be used
as a potential “shortcut” to reach node n5, which shortens
the distance of n5 to eight hops.

However, to make use of shortcuts during the routing
within the complete CDG, existing channel dependencies
have to be considered. While, in theory, it would be possible
to invalidate decisions and dependencies for paths which use
n5 as an intermediate node, it will increase the runtime of
the routing algorithm. Since the channel dependencies are
built incrementally by Algorithm 1, changing an intermediate
dependency (cp, cq) potentially invalidates all existing depen-
dencies (cq, ·), as well as subsequent dependencies. To avoid
the recalculation of paths, we incorporate the following opti-
mization into Nue: Using islands as shortcuts is only allowed
if existing local channel dependencies can be kept in place.
This avoids the need to reconsider subsequent dependencies.

We exemplify this algorithm5 by using the example net-
work of Fig. 7a. Assume, after the impasse of Algorithm 1
and the solution for a path to the island node n4 = ncq , the

current state of D is shown in Fig. 8. So, we first have to
check whether n4 can be used as a shortcut to reach n5 or
not, i.e., we must verify that changing the channel depen-
dency (cn3,n4 , cn4,n5) into the used state does not induce a
cycle in D. Assume further, that n7 and n5 were used as

5
See footnote 3.



intermediate nodes to reach n6 and subsequent nodes, not
shown in Fig. 7a. Therefore, the usedChannel variable of n6

is set to (n5, n6) and the channel dependency (cn7,n5 , cn5,n6)
is in the used state. Our shortcut algorithm determines all
dependent channels of n5, i.e., all channels dependencies
(c·,n5 , cn5,·) calculated in the current routing step. After-
wards, the algorithm checks for all dependent channels (n5, ·)
whether changing the dependency (cn4,n5 , cn5,·) via the pre-
vious island induces a cycle or not. If no cycle is induced
in D, then n4 is a valid shortcut for n5 and any subsequent
path decisions. The usedChannel variable for n5 can be
changed to cn4,n5 , and previous changes to ω of cn7,n5 and
(cn7,n5 , cn5,n6) can be reversed.

4.7 Correctness, Completeness & Complexity
In the following, we prove that Nue routing is destination-

based and cycle-free, see Definition 3, and we prove Nue’s
deadlock-freedom. Meaning, the CDG D induced by the
calculated paths is acyclic, independently of the underlying
network or the predefined number of available VCs. After-
wards, we summarize Nue’s time and memory complexity.

Lemma 1. Nue routing is destination-based and cycle-free.

Proof. Assume, Nue is not destination-based, and therefore
the next channel cq+1 at a certain node is not unique for
one destination. Algorithm 1 calculates the paths Pny,nx

for a source node nx and all other nodes in the network in
the opposite direction of the spanning tree created by the
modified Dijkstra algorithm, i.e., that the paths follow the
usedChannel variable towards the source node. The fact that
the algorithm either assigns ∅ to usedChannel, see line 3, or
one specific channel for each node, see line 21, contradicts
our assumption. Hence, Nue routing is destination-based.
The fact that Nue is cycle-free follows directly from the
fact that Nue is destination-based and the use of positive
channel weights: Let Pnu,nv be a cyclic path, then either nv
is part of the cycle or not. The former case implies that nv
has a usedChannel 6= ∅ assigned to it by Algorithm 1, i.e.,
∃cp, cq ∈ C : cp.distance + cq.weight < 0 = nv.distance. This
is only possible when weights are negative, which contradicts
the fact, that initial weights are positive and weight updates
of channels are positive as well. In the later case, that nv
is not part of the cycle, at least one channel (·, nw) of the
path has to contradict the destination-based property of Nue
routing. Hence, Nue routing is cycle-free.

Lemma 2. Nue routing is deadlock-free.

Proof. According to Theorem 1, the routing function is dead-
lock-free iff the corresponding CDG is acyclic. For each
virtual layer, Nue creates a new complete CDG Di and
changes the states of the channels and channel dependencies
of the escape paths to the used state. Since the escape
paths are derived from a spanning tree, no cycle is induced
in Di after adding the escape paths. The cycle checks, see
Algorithm 1 line 15, and Sections 4.6.2 and 4.6.3, before any
of the usedChannel variables are changed, are preventing
Nue from creating a cycle in the acyclic Di. As a result, the
complete CDG Di for virtual layer Li, for all 1 ≤ i ≤ k, is
cycle-free, see Definition 6, and Theorem 1 is applicable.

Lemma 3. The Nue routing function ensures connectivity
between any pair of two nodes nu, nv ∈ N in the interconnec-
tion network I = G(N,C), i.e., Pnu,nv 6= ∅.

Proof. Assume, there exists a pair of nodes, nu, nv ∈ N , for
which the path Pnu,nv = ∅, i.e., Nue is incapable of calcu-
lating the path under the given VC constraint. Therefore,
either the network I is disconnected, which contradicts Defini-
tion 1, or the variable nu.usedChannel = ∅ and the modified
Dijkstra algorithm reaches an impasse. Due to the fact that
Pnu,nv = ∅, the local backtracking algorithm falls back to
the escape paths, see Section 4.6.2. Meaning, if nv ∈ Nd

i ,
then from Definition 7 it follows that for every nw ∈ N
there exists a (nw, ·) ∈ Csi with Rs

(
(nw, ·), nv

)
∈ Cs, i.e., a

path Pnu,nv =
{

(nu, ·), . . . , (·, nv)
}

exists using only channels
in Csi . This contradicts the initial assumption Pnu,nv = ∅,
hence Nue routing ensures full connectivity.

Most terms of the below shown Proposition 1 follow directly
from the explanations in previous Sections 4.1–4.6. Therefore,
we will focus the following explanations on the most complex
and most time consuming term O(. . .)Routing, i.e., Algorithm 1
of our Nue routing.

For the complexity analysis, let ∆ denote the maximum
degree of the interconnection network I = G(N,C), then
it follows that |C| ≤ ∆ · |N | and |E| ≤ ∆ · |C| ≤ ∆2 · |N |.
The time complexity, excluding the acyclicity check, for our
modified Dijkstra algorithm, as presented in Algorithm 1, is
O(|Ci| · log |Ci|+ |Ei|) when executed on a complete CDG Di.
A heap withO(1) time complexity for the“decrease-key”oper-
ation is needed to achieve this complexity. The optimization,
see Section 4.6.1 and conditions (a)–(d), results in a differ-
entiated time complexity for the acyclicity check of Di, see
line 15 of Algorithm 1. In the best case, i.e., condition (a)
or (b) are applied, the time complexity is O(1). The same
applies to the “merge” of the two acyclic subgraphs assuming
that ω(cq) is zero, see line 6 of Algorithm 3. An actual
merge, see lines 7 and 8, of two vertex-disjoint and acyclic
subgraphs with varying identification numbers can only be
performed |N | times throughout the execution of Nue rout-
ing. Hence, the time complexity of all merge steps is at most
O(|N | ·(|Ci|+ |Ei|)). The time complexity for any depth-first
search within a subgraph of Di is O(|Ci|+ |Ei|). However,
the DFS has to be executed at most once per edge e ∈ Ei
and per virtual layer Li, because afterwards the state of e is
either used or blocked, and condition (d) cannot be applied
again.

Proposition 1. The time complexity of Nue routing for
a given interconnection network I, with a fixed maximum
switch radix ∆, with ∆ ∈ N, and a fixed number of supported
virtual channels k, with k ∈ N, is

O
(
|C|
)

Partitioning
+ k · O

(
∆|Ci|

)
Build complete CDG

+

k · O
(
∆|N |2

)
Convex Hi

+ k · O
(
|N | log |N |+ |C|

)
Spanning Tree

+

O
(
|N |(|Ci| log |Ci|+ |Ci|+ |Ei|) + k|Ei|(|Ci|+ |Ei|)

)
Routing

+

O
(
|N |2

)
Forwarding Tables

+O(|N |2
)

Weight Updates

= O
(
|N |2(∆ log(∆|N |) + k∆4)

)
= O

(
|N |2 · log |N |

)
while its memory complexity (including storing the result) is

O
(
|N |+ ∆ · |N |+ ∆2 · |N |+ |N |2

)
= O

(
|N |2

)
assuming that the number of channels of I can be approxi-
mated by ∆ · |N | and assuming that |Ei| ≤ ∆2 · |N |.
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Figure 9: Averaged edge forwarding index metrics:
minimum Γrmin and maximum Γrmax for the whiskers,
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5. EVALUATION OF NUE ROUTING
We apply Nue to the InfiniBand network technology. We

use a publicly available simulation toolchain [7], based on
InfiniBand tools and a flit-level simulator written with the
OMNeT++ framework. We create different topologies and
route these with multiple routing algorithms which are imple-
mented in the production-quality InfiniBand network man-
ager OpenSM version 3.3.16 [25]. The simulator estimates
the communication throughput of an all-to-all traffic pattern.
Most of the routing algorithms either omit the calculation of
switch-to-switch paths entirely, e.g., fat tree routing [33] or
Up*/Down* routing [29], or ignore these paths during the
DL-avoidance calculation phase, e.g., DFSSSP, since switch-
to-switch paths are only used for management messages and
not data messages. Therefore, for a fair comparison, we
exclude switches from the set of destination nodes for Nue
routing while performing the following evaluations.

5.1 Path Length and Edge Forwarding Index
Nue routing does not always create routes along the shortest-

paths, depending on the available number of VCs and whether
the escape path is used or not. However, non-minimal routes
increase latency and may cause higher network congestion.
We first analyze the path length of routes created by Nue
and compare them to shortest-path algorithms. Additionally,
we investigate the edge forwarding index γ for inter-switch
ports in the network [15]. This metric allows us to analyze
and compare the quality of the routing function in terms of
path balancing. A high minimum γ and low maximum γ are
indicators for a well balanced routing algorithm.

To evaluate both metrics, we create 1,000 random topolo-
gies. Each topology consists of 125 switches interconnected
by 1,000 channels, and eight terminals connected to each
switch. We apply our Nue routing, with 1 ≤ k ≤ 8 virtual
channels, as well as LASH and DFSSSP routing, to create
DL-free forwarding tables. We collect the following metrics
for each topology/routing combination: minimum, maxi-
mum, and average edge forwarding index and the standard
deviation, i.e., γt,rmin, γt,rmax, γt,ravg, and γt,rSD for topology t and
routing r. These metrics are then arithmetically averaged

for all 1,000 topologies: Γrmin =
∑1,000

t=1 γ
t,r
min

1,000
and so forth.

Fig. 9 shows the result as box plots, with whiskers in-
dicating Γrmin and Γrmax, and with the box indicating the
average Γravg and Γravg ± ΓrSD. As we can see, Nue routing
performs almost similar to DFSSSP, for k ≥ 4. It is worth

mentioning, that DFSSSP needs at least four VCs to calcu-
late DL-free routes for these topologies, or five VCs in some
exceptional cases. LASH’s VCs requirement is lower com-
pared to DFSSSP and ranges between two and four. However
both, Nue and DFSSSP, clearly outperform LASH w.r.t. the
edge forwarding index metric. Even so Fig. 9 indicates that
DFSSSP slightly outperforms Nue, we have to keep in mind
that Nue routing is designed for arbitrary topologies and
supports every given number of VCs. Therefore, Nue will be
able to calculate DL-free paths even if we scale up the size
of the topologies, while the other routings, such as DFSSSP,
will fail due to VC limitations, as we will see in Section 5.3.

The increased γ for k < 4 has two reasons: one is the
concentration of paths on certain channels to bypass rout-
ing restrictions, and the other are longer paths due to the
use of the escape paths or parts of them. It is clear that a
longer path changes γ for more ports in the network. For all
1,000 random topologies, we measured the maximum path
length in the network. For the best case, Nue routing needs
only two VCs to support the same maximum path length as
the shortest-path algorithms DFSSSP and LASH. On aver-
age, Nue routing achieves the same maximum path length—
arithmetic average of 5.3—as DFSSSP, if Nue distributes the
paths among at least seven virtual layers. The worst case
length of the longest path for Nue is 7–10, depending on the
given number of VCs, while it is 6 for DFSSSP/LASH.

The number of fall backs to escape paths depends on many
factors, such as topology type, size, number of VCs, and
the chosen root node for the spanning tree. For our random
topologies with no additional VCs, Nue did fall back for 0%–
9.7% of the destinations, with an average of 0.95% across
all 1,000 simulations for this case. For 8 VCs this average is
below 0.006%. A general prediction of the number of times
Nue uses the escape paths is beyond the scope of this paper.

5.2 Throughput for (Ir-)regular Topologies
Additionally to the random topologies from Section 5.1,

we use the simulation toolchain to measure the through-
put for four standard topologies (i.e., fat tree, torus, Kautz
graph [23], Dragonfly [20]) and two real-world topologies,
namely Cray’s Cascade [9] and Tsubame2.5’s fat tree [14]
(2nd rail; connecting 1,407 compute node). For the Cascade
topology, we configured 192 global channels to connect the
two Cascade electrical groups. An arbitrary random topology
has been chosen among the 1,000 created random topologies
for this throughput measurement. All topologies accommo-
date roughly 1,000 terminals6 to allow comparison between
topologies as well. Each switch is connected to at least
one terminal for all topologies, except for the two fat tree
topologies. Detailed topology configurations, utilizing 36-
port switches (exception: 48 ports for Cascade), are given
in Tab. 1. We assume QDR InfiniBand and a limit of eight
VCs for the simulations. The redundancy r listed in Tab. 1
refers to a multiplication of switch-to-switch channels w.r.t.
the usual topology definition to increase the port usage.

The flit-level simulator performs an all-to-all send oper-
ation with 2 KiB message size between all terminals of the
network. An exchange pattern of varying shift distances7

is used at each terminal to communicate with all other ter-

6
High memory consumption for the detailed/accurate flit-level simu-

lations prevents us from analysing much larger topologies.
7
Simulating uniform random injection traffic yields similar behaviour

of Nue, and showing these results will not provide further insight.
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Figure 10: Simulated throughput for all-to-all operation on five standard and two real-world topologies, as
configured according to Tab. 1; Nue routing shown for all numbers of VCs between 1 and 8 (from left to
right); VC requirement by other routings for deadlock-freedom are shown atop the individual bars

Table 1: Topology configurations (w/ link redun-
dancy r) used for throughput simulations in Fig. 10

Topology Switches Terminals Channels r

Random 125 1,000 1,000 1
6x5x5 3D-Torus 150 1,050 1,800 4
10-ary 3-tree 300 1,100 2,000 1
Kautz (d = 7, k = 3) 150 1,050 1,500 2
Dragonfly (a = 12,

p = 6, h = 6, g = 15)
180 1,080 1,515 1

Cascade (2 groups) 192 1,536 3,072 1
Tsubame2.5 243 1,407 3,384 1

minals [7]. We measure the throughput of all eight routing
algorithms that are available in OpenSM version 3.3.16. Im-
possible topology/routing combinations, such as Torus-2QoS
routing for the 10-ary 3-tree, are ignored. We compare Nue
routing, for the number of virtual channels 1 ≤ k ≤ 8, for a
given topology to the other usable algorithms, see Fig. 10.

Besides the simulated throughput for each topology and
routing combination, we give the number of needed VCs
atop of the bars in Fig. 10. For example, DFSSSP routing
needs four VCs for a deadlock-free routing of the random
topology. However, DFSSSP usually uses all eight available
VCs to optimize the path balancing across the virtual layers,
a technique to increase the throughput slightly [5].

We see two trends for all investigated topologies: First, an
increase of used VCs for Nue also increases the throughput
for the all-to-all communication. This is a result of the
decreased γt,Nue

max when we use multiple VCs, as reported in
Section 5.1. The outliers from this pattern, e.g., the decrease
in throughput for the random topology and four VCs, are
correlated to a sudden increase in fall backs to the escape
paths. In this particular example, Nue had to fall back for 14
of the 1,000 destinations, while Nue with two and more than
four VCs was able to route the topology without any fall
back. A second trend is, that Nue shows a slight variance in
throughput after reaching a certain peak, usually for about
k ≥ 5 in our examples, but this generally depends on topology
type and size. We account this behavior to a mismatch
between the static routing and the execution order of the
point-to-point communications, which assemble the all-to-all
traffic pattern. A mismatch can cause temporary congestion

in the network which slows down the entire communication
process as a result, which is a known problem [7,16].

In general, Fig. 10 shows that Nue routing is competitive to
the best performing routing for each individual topology, i.e.,
offers between 83.5% (10-ary 3-tree) and 121.4% (Cascade
network) throughput in comparison to Torus-2QoS for the
torus and DFSSSP for the other topologies. Occasionally,
depending on the given number of VCs, Nue is able to out-
perform the best competitor. For example, for the random
topology Nue, with k ≥ 6, offers up to 15% higher through-
put than DFSSSP, and for the Cascade network up to 21%
higher throughput, with k ≥ 3 but excluding k = 6. Fur-
thermore, given enough VCs, Nue is able to outperform the
other routings, such as fat-tree routing or LASH, to a great
extent. Therefore, we consider Nue routing to be a adequate
alternative to the other investigated algorithms, or at least
a suitable fall back in case the best performing algorithm
becomes inapplicable, as we will discuss in Section 5.3.

5.3 Runtime and Practical Considerations
In Proposition 1 we mathematically derived the time com-

plexity of Nue routing. To put this into perspective, we
compare the runtime of Nue (with 8 VCs) for tori topologies
to other deadlock-free routing algorithms implemented in
OpenSM. Therefore, we extend the current OpenSM (version
3.3.19) with our Nue routing to achieve a fair comparison
and integrate Nue into the toolchain, described in Section 5.

We create 25 3D torus networks with a difference in di-
mension of at most one, i.e., we start with a grid size for the
switches of 2x2x2, 2x2x3, 2x3x3, . . . , and go up to 10x10x10.
Each of these switches connects to four terminals, hence the
10x10x10 torus accommodates 4,000 terminals. Furthermore,
the assumption for this test is that the maximum of available
VCs is 8, adjacent switches utilize no channel redundancy,
and we randomly inject 1% link/channel failures into the
topology. The 1% link failures have been chosen according
to the observed annual failure rate of production HPC sys-
tems [7]. Besides Nue, we evaluate the runtime of DFSSSP,
LASH, and Torus-2QoS routing to calculate deadlock-free
routing tables for the same faulty topology. The testbed
used is a dual-socket Intel Xeon E5-2620 server with 64 GiB
RAM and we pin the InfiniBand fabric simulator (ibsim) to
socket 0 and OpenSM to socket 1 to minimize disturbances.

From the results, as shown in Fig. 11, we can draw two
main conclusions: First, Nue is competitive in terms of
runtime. Nue routing calculates the forwarding tables faster
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than the topology-agnostic DFSSSP, which has the same time
complexity of O

(
|N |2 · log |N |

)
, see [8]. Nue outperforms the

runtime of LASH routing for tori larger than 4x4x4 with 256
terminals attached. Only the topology-aware Torus-2QoS
routing is on average 9x faster than Nue, which is as expected
since Torus-2QoS is able to avoid deadlocks analytically. The
second important result is an applicability of 100%, i.e.,
Nue routing scales with the topology size. The other three
deadlock-free algorithms fail, notice the missing data points
in Fig. 11, either because the algorithms run out of VCs
(DFSSSP and LASH exceed the 8 VC limit) or because the
failures prevent an analytical solution for the deadlock-free
paths problem (Torus-2QoS). Only Nue routing is always
applicable while offering good path balancing.

6. RELATED WORK
A well-known example for algorithms avoiding to create cy-

cles in the CDG is the Up*/Down* routing [29]. Up*/Down*
prohibits a route to use an ’up’ direction after a ’down’ direc-
tions. This approach does not necessarily use shortest paths
or load-balances routes efficiently. Indeed, the root often
becomes a bottleneck in practice. The algorithms UD DFS
routing [28], L-turn routing [22] and segment-based routing
(SR) [24] are based on Up*/Down* and try to reduce or
balance the routing restrictions to increase the path bal-
ancing across the network. For network technologies where
the next channel in each routing step is chosen based on
the source and destination node the Multiple Up*/Down*
routing [10] can increase the path balancing. For similar
network technologies without virtual channel support the
Tree-turn routing [34] or FX [27] routing can be used. For
example, Tree-turn adds two more directions to the four
directions used by L-turn routing, which reduces the number
of prohibited turns further to increase the balancing.

Another set of routing algorithms breaks cycles in the CDG
with virtual channels. The destination-based DFSSSP [8]
and LASH [32] routings operate similarly in terms of break-
ing the cycles, i.e., searching for cycles in the CDG and
moving individual paths to other virtual layers. Albeit, both
algorithms might suffer from a limited number of available
VCs. Therefore, LASH-TOR [31] enhanced LASH routing to
use Up*/Down* in the last virtual layer if the routes in this
layer form an unresolvable cycle. This can result in multiple

outgoing ports at a switch for a single destination, hence
LASH-TOR is not destination-based in the general case.

Kinsy et al. [21] proposed two application-aware routings,
called bandwidth-sensitive oblivious routing (with minimal
routes), or BSOR(M). While BSOR operates similar to our
approach, meaning its calculates the routes within the CDG,
the BSORM routing calculates the routes within the net-
work and breaks cycles afterwards, resembling the method
of DFSSSP and LASH. However, the difference between Nue
and BSOR is that BSOR randomly deletes edges from the
CDG to form an acyclic CDG and solves a multi-commodity
flow problem, based on the demands of the application, with
a MILP algorithm for small networks. For large networks,
BSOR uses Dijkstra’s algorithm as a heuristic on a weighted
and acyclic CDG for each source/destination pair to balance
the application traffic. BSOR(M) is designed for network
technologies with forwarding based on source and destina-
tion, and therefore are inapplicable to InfiniBand for example.
The same holds for smart routing [3]. The approach of smart
routing is to calculate the shortest paths and investigate the
induced CDG for cycles, while storing which path induced
which edge in the CDG. A cycle search in the CDG subse-
quently cuts the edges of a cycle which minimizes the average
path length after recalculating the paths inducing this edge.
While smart routing can be used for technologies without
VCs, the computational cost, which is O((#switch)9), is too
high for a practical use in large scale networks.

7. CONCLUSION
The InfiniBand interconnect is currently the #1 network

technology—w.r.t. the number of systems in the Top500
list—for high performance computing. Lossless networks,
such as InfiniBand or Converged Enhanced Ethernet (CEE),
also become more common in data center environments.
The main features of these networks are lossless transmission
using either credit based flow control in InfiniBand or Priority
Flow Control (PFC) with pause frames in Ethernet. Both
technologies require deadlock-free routing to function reliably.
The same is true for many network-on-chip architectures.

Our approach of applying a graph search algorithm within
the complete channel dependency graph instead of the actual
network, and our implementation of it, called Nue, is the first
reliable strategy to route arbitrary topologies with a limited
number of virtual channels, or even in the absence of VCs.
Nue routing is tailored for the deadlock-free, oblivious, and
destination-based routing needed in CCE and InfiniBand and
can directly be employed for both, e.g., using InfiniBand’s
virtual lanes or using PFC together with Priority Code Point
for CEE. Possible applications of Nue for NoC architectures
include, but are not limited to, the routing between tiles con-
nected by virtual channel routers in a fault-tolerant manner.

Furthermore, Nue’s capability of arbitrarily limiting the
number of used VCs allows the combination of DL-freedom
and quality of service (QoS), which could be based on the
same technology feature. E.g., InfiniBand’s service levels are
mapped to virtual lanes, which are used by LASH/DFSSSP
to avoid deadlocks. So, previously, the choice was either
having QoS with topology-aware routing or ignoring QoS
and using topology-agnostic routings based on VLs (LASH
or DFSSSP). With Nue routing, one could use two VLs for
DL-freedom while having four QoS levels, for example.

All these characteristics and advantages, combined with
Nue’s low time complexity of O(|N |2 · log |N |) and memory



complexity of O(|N |2), make Nue routing a suitable algo-
rithm to route modern large-scale HPC systems, lossless data
center fabrics, and NoC architectures. Therefore, we expect
a wide adoption of Nue routing and of the concept of routing
on the complete channel dependency graph in these fields.
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[26] T. Rauber and G. Rünger. Parallel Programming: for
Multicore and Cluster Systems. Springer-Verlag, 2013.

[27] J. C. Sancho, A. Robles, and J. Duato. A Flexible Routing
Scheme for Networks of Workstations. In ISHPC ’00:
Proceedings of the Third International Symposium on High
Performance Computing, London, UK, 2000.
Springer-Verlag.

[28] J. C. Sancho, A. Robles, and J. Duato. A new methodology
to compute deadlock-free routing tables for irregular
networks. In Network-Based Parallel Computing.
Communication, Architecture, and Applications, volume
1797 of Lecture Notes in Computer Science, pages 45–60.
Springer Berlin Heidelberg, 2000.

[29] M. D. Schroeder, A. Birell, M. Burrows, H. Murray,
R. Needham, T. Rodeheffer, E. Satterthwaite, and
C. Thacker. Autonet: A High-speed, Self-Configuring Local
Area Network Using Point-to-Point Links. IEEE Journal on
Selected Areas in Communications, 9(8), 1991.

[30] K. S. Shim, M. H. Cho, M. Kinsy, T. Wen, M. Lis, G. E.
Suh, and S. Devadas. Static Virtual Channel Allocation in
Oblivious Routing. In Proceedings of the 2009 3rd
ACM/IEEE International Symposium on Networks-on-Chip,
NOCS ’09, pages 38–43, Washington, DC, USA, 2009. IEEE
Computer Society.

[31] T. Skeie, O. Lysne, J. Flich, P. López, A. Robles, and
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