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analysis to recover the missing information. In contrast, multi-level rewriting instantiates a hierarchy of

dialects (IRs), lowers programs level-by-level, and performs code transformations at the most suitable level.

We demonstrate the effectiveness of this approach for the weather and climate domain. In particular, we

develop a prototype compiler and design stencil- and GPU-specific dialects based on a set of newly introduced

design principles. We find that two domain-specific optimizations (500 lines of code) realized on top of LLVM’s

extensible MLIR compiler infrastructure suffice to outperform state-of-the-art solutions. In essence, multi-
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1 INTRODUCTION

Domain-specific approaches are revolutionizing the generation of high-performance device-
specific code and sparked the development of powerful domain-specific language (DSL) frame-
works, often achieving performance numbers unattainable for general-purpose compilers [13, 38,
45, 51, 54, 58]. For example, Halide [44] automated the generation of high-performance code for
image processing, XLA [31] exploited domain-specific compilation to accelerate deep learning,
and Stella [24] was the first to move the weather and climate simulation to GPUs leading to 2.9×
speedup [17].

The broad success of domain-specific compilers—over time—also exposed their largest weak-
ness: Their one-off implementations mostly separated from general-purpose production compiler
pipelines. Halide, XLA, Stella, and others are specialized solutions for their respective domains that
are not designed with reusability in mind. The small number of reusable compiler infrastructures,
research-oriented such as ROSE [43] or production-oriented such as LLVM [29], evidences of a
significant effort required to design and maintain the infrastructure compared to implementing
domain-specific functionality. As a result, the ongoing trend of designing standalone DSL compil-
ers compartmentalizes the developer communities, spreads the efforts, hinders innovation transfer,
and leads us to ask: “how can we design a domain-specific compiler that (a) is cleanly decou-
pled from user-facing front-ends, (b) makes it easy to implement domain-transformations, and (c)
clearly separates potentially generic components?”

We take a practical case study-based approach to address this question by designing and com-
pleting a domain-specific compiler for weather and climate models [10, 26]. The principal compu-
tational patterns found in these codes are stencils and the Thomas algorithm. While the stencils are
similar to the ones found in image processing [44] or seismic imaging [36], the Thomas algorithm
demands specific control flow extensions. Besides, the bandwidth-limited low-order weather and
climate stencils often require adapted optimization strategies [24]. However, the underlying ab-
straction of loops over multi-dimensional arrays, the arithmetic optimizations, and the conversion
to device-specific GPU code is mostly identical across these domains, yet often reimplemented
[53].

We propose to design domain-specific compilers using multi-level IR rewriting. This approach
is a combination of (a) intermediate representations (IR) based on Static Single Assignment

form (SSA) [50], (b) operations with high-level semantics, and (c) progressive lowering, which
provides an effective framework for reusable domain-specific high-performance code generation.
SSA-based IRs allow us to reuse optimizations from general-purpose compilers [37]. High-level
operations concisely encode domain properties and make them readily available as, e.g., SSA data
flow without a need for costly analyses. Progressive lowering makes it natural to preserve domain
information, to express transformations as high-level peephole optimizations [35], and to intro-
duce reusable lower-level abstractions. The recently introduced MLIR compiler infrastructure [30]
allows us to instantiate production-quality compiler IRs that follow the practice-proven IR design
principles developed in LLVM [29] over the past 15 years.
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Fig. 1. The Open Earth Compiler.

The Open Earth Compiler1 we implemented (Figure 1) is one of the first end-to-end compilation
flows leveraging multi-level IR rewriting for high-performance code generation. Its core consists of
a set of MLIR dialects, i.e., collections of domain-specific operations and transformations, and con-
versions between them. The Open Earth Compiler optimizes programs by progressively convert-
ing them from higher-level domain-specific dialects to lower-level platform-specific ones, using
peephole-style rewrite patterns. Each dialect defines an abstraction that makes relevant analyses
inexpensive and transformations convenient to implement.

The compilation process starts from the stencil dialect (Section 4) designed as a target for vari-
ous user-facing DSLs as well as a data structure for domain-specific transformations such as stencil
inlining (Section 5.1). Stencils are then lowered through a series of IRs featuring index operations
(Affine), structured control flow (SCF), and arithmetic operations (Standard), all of which are read-
ily available in MLIR [30], together with loop- and value-level transformations such as unrolling or
common subexpression elimination. These IRs let us target a structured loop abstraction instead
of low-level “goto”-based SSA IR commonly found in compiler backends. We use this structure to
design a generic GPU kernel dialect (Section 6) and to implement loop-to-kernel conversion using
simple patterns based on the parallelism information preserved from the stencil level, thus avoid-
ing expensive GPU mapping algorithms [21, 56]. The complete pipeline transforms our high-level
climate-code into a fast target-specific binary.

While the stencil dialect is generic enough to cover a range of applications (e.g., image process-
ing or seismic imaging), our focus is excellent performance for the climate domain. The semantics
of our stencil operations enable us to replace complex sequences of loop transformations with
generic instruction-level transformations, e.g., redundancy elimination, requiring little analysis
to ensure validity. Other domains can adapt our stencil dialect to their transformation needs or
reuse only the mid- and low-level abstractions. We demonstrate that, thanks to the multi-level IR
rewriting, developing a domain-specific compiler with reusable components is surprisingly simple
provided a sufficiently expressive infrastructure.

1https://github.com/spcl/open-earth-compiler/.
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Our contributions are:

• An approach to designing a modular domain-specific compiler using multi-level IR rewriting
(Section 2).
• A stencil language expressed as an MLIR dialect, which encodes the high-level data flow of

a stencil program as SSA def-use chains (Section 4).
• A set of transformations to tune stencil programs at a high level using simple peephole

optimizations instead of conventional loop transformations (Section 5).
• A platform-neutral GPU dialect abstracting the vendor-specific GPU code generation

(Section 6).
• An evaluation on benchmarks relevant to real climate models: COSMO (Europe) and FV3

(US) (Section 7).
• A comparison to the industry-leading stencil compiler and to state-of-the-art solutions for

weather and climate (Section 7.4).

2 MULTI-LEVEL IR REWRITING

Multi-level IR rewriting promises to simplify the development of domain-specific compilers by
defining a stack of reusable abstractions and by implementing the transformation at the most
relevant level. The goal is to minimize the complexity of each level and to reduce the cost of
analysis by encoding and preserving transformation validity preconditions directly in the IR.

Identifying pertinent domain-specific abstractions is paramount to the multi-level rewriting.
Each new abstraction increases risks of excessive complexity or, on the contrary, of incompleteness
where some workloads cannot be represented. We instantiate the Open Earth Compiler using the
MLIR infrastructure [30], carefully considering the abstractions it provides and introducing new
ones when necessary. Our objective is to facilitate performance extraction from one of the two
primary sources: parallelism and data locality, which often require conflicting transformations
yielding complex optimization problems [60]. Instead of attacking these problems frontally, we
design abstractions to extract parallelism and locality information from the domain knowledge,
using the following principles:

P1 Transformation-driven Semantics. The domain abstractions for different levels of our
pipeline, e.g., stencils or GPU kernels, should favor transformation-readiness over programmer-
friendliness. Our objective is to build a stack of intermediate representations that enable the com-
piler to reason about domain-specific programs without resorting to complex analyses such as loop
extraction [20] or dependence analysis [55]. Each IR in the stack is focused on a specific set of do-
main transformations and designed to make all necessary information readily available. End-user
usability aspects are deliberately deferred to DSL front-ends.

P2 Progressive Lowering. We aim for an effective and streamlined transformation pipeline
where programs are progressively lowered [30] from a high-level domain IR to a low-level target
IR. The different IR abstractions should be designed to maintain high-level semantic information as
long as necessary, such that a potentially complex recovery of high-level concepts can be avoided.
An important additional aspect of progressive lowering in larger domain-specific compilers is that
abstractions should seamlessly compose with each other to coexist in a single module while the
lowering is applied selectively.

P3 Explicit Separation. Given the abstraction composability mandated by the previous prin-
ciples, it is easier to combine individual pieces of the abstraction than to disentangle a complex
representation. Our incarnation of the ubiquitous separation-of-concerns approach relies on the
domain-relevant separation being explicit in at least some intermediate abstraction in our stack.
In particular, performance-related aspects of the abstractions, such as the degree of parallelism

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021.



Domain-Specific Multi-Level IR Rewriting for GPU 51:5

Table 1. Domain-specific to Device-specific Abstractions

Level Concepts Transformations Sec.

- parallel stencil evaluation
- value semantic
- explicit data flow
- compile-time access offset

Stencil new

- compile-time domains

- inlining (+CSE)

- unrolling (+CSE)

4
5.1
5.2

Standard & - multi-dimensional storage
Affine & - affine index computation
SCF - parallel loop

- loop mapping

- loop to GPU
5.3

- host/device code - GPU outlining
GPU new

- SIMT parallelism - host/device comp.
6

or the memory footprints, should be present in the IR and should be modifiable separately from
each other. Similarly, compile- and run-time aspects of the abstraction should be separated. In the
longer term, such representations are more amenable to modern search techniques [7, 11, 23].

The abstractions we use enable progressive lowering (P2) from domain-specific to device-
specific concepts providing clear separation (P3) between levels. As listed in Table 1, each level
makes specific transformations easy to implement (P1). This multi-level representation also helps
us separate optimizing transformations from the lowering between the levels that constitute a
large portion of domain-specific compilers.

3 THE MLIR INFRASTRUCTURE

MLIR is a recent production compiler infrastructure that is particularly well-suited for multi-level
IR rewriting due to its extensibility through dialects and its built-in support for declarative rewrite
patterns [30]. We thus implement the Open Earth Compiler as a set of MLIR dialects and rewrite
patterns designed to compose with the existing Standard, Structured Control Flow, Affine, and
LLVM IR dialects.

Core MLIR concepts include operations, values, types, attributes, (basic) blocks, and regions.
An operation is an atomic unit of program description. A value represents data at runtime and is
always associated with a type known at compile time. Operations use values (but do not consume
them) and define new values. Values can only be defined once, making the IR obey SSA form.
A type holds compile-time information about a value, while attributes provide a way to attach
compile-time information to operations. A block is a sequence of operations that, together with
other blocks, connects to regions. A region is attached to an operation that defines its semantics.
Non-trivial control flow is only allowed between an operation and the regions attached to it, and
between the entry and exit points of blocks that belong to the same region. Specific operations
define the structure of the control flow; for example, the last operation in a block (a terminator)
can conditionally or unconditionally transfer the control flow to another block. There is no fixed set
of operations, attributes, or types. Instead, users define their own or reuse those defined by others.

A dialect is a set of operations, attributes, and types designed to work together. There is no
formal or technical restriction on how dialects are structured. Unless prescribed otherwise by
the semantics of the operation, a region can contain operations from different dialects, and an
operation can reference types and attributes defined by a different dialect. As a result, we can
extend the MLIR ecosystem by adding custom dialects. In our compiler, we use this extensibility
to make stencil computations first-class by providing custom types, attributes, and operations.
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Fig. 2. Example MLIR operation that sets 64 × 64 × 64 elements of the defined value %def to the negative
of the value %use.

The same holds for control flow operations such as loops or data types such as multi-dimensional
arrays.

Figure 2 illustrates the syntax for an example operation from our Stencil dialect. The sten-
cil.apply operation uses a value %use and defines a value %def. Types and attributes annotate
the operation with compile-time information such as the iteration domain. The nested region con-
sist of a single basic block that implements computation performed by the operation using the
basic block argument %arg.

4 THE STENCIL DIALECT

The Open Earth Compiler operates on weather and climate models. These models integrate par-
tial differential equations forward in time commonly using either finite difference or finite volume
discretization. They comprise dozens of stencil programs (Section 4.4) consisting of multiple de-
pendent stencil operators (Section 4.3) applied across regular or irregular grids. In this work, we
consider regular three-dimensional grids that partition the space into cells, each of which with six
neighbors. This regularity allows a cell to be addressed via a three-component index.

In stencil programs, optimizing individual stencils is often insufficient. Instead, chains of depen-
dent stencils or entire programs must be optimized [22], e.g., using producer-consumer fusion to
obtain maximum performance. We design the Stencil dialect to represent stencil programs consist-
ing of stencil operations connected between them and with input/output data structures through
data flow, with optional control flow (Section 4.5), following the multi-level IR rewriting principles
defined in Section 2. Our dialect is explicitly decomposed (P3) into the high level, where we model
the data flow between operators, and the low level, where we model the parallel execution of indi-
vidual operators. The former enables flow rerouting transformations where a stencil operator can
be seen as a unit (as opposed to lower-level IRs where a stencil is a collection of arithmetic instruc-
tions), while the latter supports parallelism exploitation (P1). The level separation also participates
in progressive lowering (P2).

The dialect is not designed as a user-facing DSL (cf. Section 7.5), but as a compiler IR that
supports transformations (P1&P3) by (a) keeping the stencil concepts high-level so they can be
moved as a unit, (b) imposing no specific execution order to expose parallelism, and (c) using
value-semantics instead of allocating storage objects to avoid costly buffer analysis.

4.1 Dialect Overview

The Stencil dialect focuses on concepts specific to stencils and relies on MLIR’s Standard dialect
to express the actual computation (P2). Figure 3 shows a stencil program that, for every point of
a 64 × 64 × 64-element domain, adds the left and the right neighbor of the input array %in and
stores the result to the output array %out. The “stencil” prefix identifies the operations and types
from this dialect.

The dialect defines two types. A !stencil.field is a multi-dimensional array that stores an element
for all points of the grid. Inputs and outputs of a stencil program have this type. A !stencil.temp

is a multi-dimensional collection of elements on a hyper-rectangular subdomain of the grid. Tem-
poraries have value semantics and are initially not backed by storage. Values of this type either
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Fig. 3. Example stencil program that evaluates a simple stencil on the array %in and stores the result to the
array %out.

Fig. 4. Example range (left) defined by an inclusive lower and an exclusive upper bound and stencil accesses
(right) expressed relative to the current position (i = 1, j = 1).

point to a subdomain of an input array or keep the results computed by a stencil operator. Both
types store single- or double-precision floating-point values (f32 or f64) on a one-, two-, or three-
dimensional domain.

The Stencil dialect also defines multiple operations introduced in Section 4.3 and Section 4.4. In
the example, the nested region of the stencil.apply operation implements the stencil operator and
the range attribute of the stencil.store operation specifies the domain written by the stencil pro-
gram. Our compiler utilizes the range attribute to automatically infer the entire stencil program’s
access ranges and iteration domains (cf. Section 5.2).

4.2 Shapes & Domains

The range notation is essential to specify stencil iteration domains and access ranges, especially
given that stencils may be accessing inputs with indices that are outside of their computation
domain, e.g., on boundaries.

Figure 4 shows our range notation (left) for a two-dimensional domain. The origin denotes the
lower bound of the computation domain and has all coordinates set to zero. Ranges are specified
given the absolute coordinates of an inclusive lower bound and an exclusive upper bound separated
by a colon.

On GPUs, integer index computations are a significant performance bottleneck. As stencil pro-
grams often execute stencils repeatedly for the same problem size, it is desirable for the stencil
dialect to support size specialization for just-in-time compilation. It does so by defining storage
shapes and iteration domains as numeric compile-time attributes (P3).

4.3 Stencil Operators

A stencil operator performs element-wise computations on all elements of a regular grid except for
some constant-width boundary. It accesses the elements of input arrays at constant offsets relative
to the coordinates of the output element.
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Fig. 5. Stencil program that evaluates two dependent stencils.

The stencil.apply operation contains a region that implements the stencil operator in terms of
scalar operations on domain elements. The scalar operations are applied to all domain elements
as in a loop nest. Stencil operator inputs and outputs correspond to values used and defined by
this operation. Inputs are assumed to not alias, and element-wise computations are assumed to be
independent (P3).

Individual input elements are read using the stencil.access operation that accesses an element
at a constant offset. The lowering of the Stencil dialect later adds the constant access offset to the
index of the current iteration (cf. Section 5.3). Figure 4 shows the offset computation (right) for a
two-dimensional stencil iteration domain. The region of the stencil operator must be terminated
by a single stencil.return operation that accepts the value of the output element as an argument.
Together, the stencil.access and stencil.return operations specify the memory access pattern of
the stencil operator. Both of them are only valid as part of the stencil operator definition.

Real-world stencil programs for weather and climate often implement dozens of dependent sten-
cil operators. A stencil program thus needs additional means to orchestrate them.

4.4 Stencil Programs

A stencil program executes a sequence of dependent stencil operators. It loads the data from the
input arrays, implements the stencil operators inline, and stores the results to the output arrays.
The SSA def-use graph of the program thus specifies the high-level data flow between the stencil
operators (P2). Having both the high-level data flow and the inlined stencil operators in a single
function facilitates code transformations across multiple stencil operators, eliminating any need
for complex interprocedural analysis (P1).

Three additional operations enable the program definition. The stencil.assert operation speci-
fies the index range for an input or output array. A valid stencil program needs to define the index
range for all input and output arrays. The stencil.load operation returns a temporary value that
contains all input array elements accessed by dependent stencils. Conversely, the stencil.store

operation stores the output of a stencil operator to the output array elements denoted by its range
attribute.

Figure 5 shows a stencil program that executes two dependent stencils. The stencil.load oper-
ation returns a temporary holding the accessed %in array elements. The second stencil operator
uses the result of the first. In the end, the stencil.store operation stores the values computed by
the second stencil to the %out array.

All stencil program parameters have to be alias-free and are either loaded from or stored to as a
unit. Intermediate results are kept in values of type !stencil.temp that are not initially backed by
storage and are thus also alias-free. Given the value semantics of !stencil.temp, the def-use graph
encodes the data dependencies between the stencil operators (P1&P3).

4.5 Control Flow

Real-world stencil applications are not limited to pure data flow semantics. While we can use just-
in-time compilation to handle most of the control-flow at the program level, we resort to MLIR’s
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Fig. 6. The SCF dialect enables the implementation of control flow inside the stencil operator.

Fig. 7. The SCF dialect and Stencil dialect extensions enable the implementation of control flow inside the
stencil operator.

built-in SCF dialect and a set of Stencil dialect extensions to support control flow at the stencil
operator level.

Figure 6 shows a stencil that, depending on a flag, accesses one of two arguments. The scf.if
operation conditionally executes either the “then” or the “else” region. In contrast to a regular
if-else, the operation returns a result value that is set by the scf.yield operations. This representa-
tion makes the data flow explicit and maintains a single stencil.return operation per stencil. An
alternative to the scf.if operation, is the select operation that chooses a value based on a condition.
Supporting the scf.if operation requires no adaptation of our compiler (P2).

Figure 7 shows the backward sweep of the Thomas algorithm—an important computational mo-
tif in weather and climate. A boundary condition makes the stencil operator position-dependent,
and a data dependency forces its sequential execution. We utilize an optional attribute to specify
the sequential loop execution, while the stencil.depend operation provides access to loop-carried
dependency and the stencil.index operation returns the current position. The latter, together with
the scf.if operation, enables the implementation of the boundary condition. Supporting the scf.if
operation requires no adaptation of our compiler (P2).

Our use of the built-in MLIR SCF dialect exemplifies how progressive lowering, explicit separa-
tion, and composable abstractions enable the reuse of compiler components in the multi-level IR
rewriting scheme.

5 STENCIL TRANSFORMATIONS

We distinguish three categories of transformations that work on the Stencil dialect: (1) perfor-
mance optimizations, (2) transformations to prepare the lowering, and (3) the actual lowering.
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Fig. 8. Two patterns enable the iterative producer-consumer fusion for entire stencil programs. The def-use
edges represent the data flow between the stencil operations.

Fig. 9. Unrolling the example stencil in the j-dimension.

5.1 Optimizing Transformations

All optimizing transformations implemented for the Stencil dialect operate at a high-level and
neither introduce explicit loops nor storage allocations (P1).

The stencil inlining pass applies fusion on the def-use graph of the stencil program. In par-
ticular, we repeatedly apply a stencil specific variant of producer-consumer fusion that replaces
all accesses to producer results by inline computation. If the consumer accesses the producer
at multiple offsets, we thus perform redundant computation for every point in the iteration do-
main. Inlining stencils in an arbitrary order may introduce circular dependencies. An input of the
consumer may, for example, depend on another stencil that transitively depends on an output of
the producer stencil. Instead of developing an algorithm to fuse the stencils in a valid order, we
implement patterns that match and rewrite small subgraphs and use MLIR’s greedy rewriter to
apply them step-by-step.

Figure 8 shows our inlining patterns. The inlining pattern matches a producer P and a consumer
C if the producer has a single consumer. If the pattern matches, then we remove the producer
stencil and inline the computation into the consumer. Additionally, we update the argument and
result lists of the fused stencils. The reroute pattern matches a producer P and its consumers C1 to
CN. If the pattern matches, then we route all outputs of the producer through the consumer that
executes next. The red (dashed) arrows mark the rerouted data dependencies. The former pattern
implements the actual inlining, while the latter pattern prepares an inlining step.

Our inlining implementation introduces redundant computation even if the consumer accesses
the same offset multiple times and always inlines the entire producer even if only one of its out-
puts is accessed. Dead code elimination and common subexpression elimination later clean up the
code. These transformations rely on the stencil accesses being side-effect free (the stencil inputs
are immutable and do not alias with the outputs). Our compiler currently implements no fusion
heuristic and continuous inlining if a pattern matches.

The stencil unrolling pass replicates a stencil operator multiple times to update more than one
grid point at once. Figure 9 shows an unrolled version of our example program.
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Unrolling is another example of a classical loop transformation implemented by our high-level
dialect. Instead of transforming loops, our implementation annotates the high-level Stencil dialect
and directly lowers to unrolled loops. We only modify the nested region attached to the sten-
cil.apply operation but not its interface. Initially, we replicate the stencil computation once for
every unrolled loop iteration and adjust the access offsets. We also adapt the stencil.return oper-
ation to return the results of all unrolled loop iterations and annotate unroll factor and dimension
using an optional attribute.

The unrolling pass supports all unroll dimensions and unroll factors. Yet, the lowering is cur-
rently limited to unroll factors that divide the domain size evenly.

Inlining and unrolling improve the performance of stencil programs. Especially inlining reduces
the off-chip data movement at the cost of introducing redundant computation. Unrolling can elim-
inate parts of the redundant computation, since the unrolled loop iterations often evaluate an
inlined producer at the same offset. Instead of removing the redundant computation ourselves, we
run the existing common subexpression elimination pass.

5.2 Preparing the Lowering

After optimizing the stencil program, we infer all access ranges and iteration domains to prepare
the lowering (P2).

The shape inference pass derives the access ranges for the input arrays and stencil operators
of the program. It is needed, since a stencil program only defines the output ranges written by
the program. The pass starts from these output ranges, follows the use-def chains that define the
program’s data dependencies, and transitively extends the access ranges.

Our algorithm walks all operations of the stencil program in reverse order and annotates the
access ranges using optional range attributes. Figure 10 shows the annotated example program
before lowering. We compute the access range of an operation as the minimal bounding box con-
taining the access extents of all its consumers. If the consumer is a stencil.load operation, then
its access extent is equal to the output range attribute. If the consumer is a stencil.apply opera-
tion, then the access extent is equal to its iteration domain extended by a minimal bounding box
containing all stencil accesses to the consumed values.

Although the access extent analysis seemingly contradicts the progressive lowering idea (P2),
it does not aim at recovering information that has been there before. Instead, it automates the
error-prone manual access range specification.

5.3 Lowering to Explicit Loops

The stencil lowering applies conversion patterns to translate the individual stencil operations to
their MLIR counterparts (P2). It is the last domain-specific part of our compilation pipeline, out-
lined in Figure 1, that lowers our high-level stencil programs towards executable code.

Even at the Standard dialect level, MLIR provides rather high-level abstractions. The memref
is a structured multi-dimensional buffer abstraction. It can have static or dynamic sizes, and an
optional layout attribute defines the index computation if the layout diverges from the row-major
format. This layout attribute also allows one to define strided hyper-rectangular views into a mem-
ory buffer, for example, with offsets and non-unit steps along each dimension. Another example
is the scf.parallel operation that models a parallel multi-dimensional loop.

Figure 10 illustrates the lowering from the stencil dialect level to the MLIR Standard dialect
level for the example introduced in Section 4.1. We define six conversion patterns that introduce
explicit loops, index computations, memory accesses, and temporary storage. After this lower-
ing, detecting stencil operators or access offsets requires analysis. Implementing domain-specific
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Fig. 10. Conversion of the Stencil dialect to the MLIR SCF+Affine+Standard dialects that further lower to
GPU abstractions.

transformations consequently becomes harder. In turn, by introducing loops and temporary stor-
age, we settle to program execution order but still maintain the parallel semantics needed for the
subsequent GPU lowering (P2).

6 THE GPU DIALECT

Since GPUs remain a platform of choice to achieve high performance, we construct our multi-level
compiler to target these devices. We designed following the principles defined in Section 2 and
implemented the GPU dialect2 for MLIR to this end with the goal of abstracting the GPU execution
model in a vendor-independent way. In particular, it generalizes MLIR’s NVVM, ROCm, and
SPIR-V representations and thus separates unified platform-independent device mapping (P1)
from platform-specific code generation (P3). The GPU dialect is not intended as a generic SIMT
execution model (P3), nor as a raising target from lower-level abstractions (P2). The dialect
exposes a set of GPU-specific concepts: hierarchical thread structure (blocks, threads, warps);
synchronization through barriers; memory hierarchy (global, shared, private, constant memory);
standard computational primitives such as parallel reductions. It is also designed to support
separate host/device compilation in a single module (P3). The latter is made possible by MLIR
modules recursively containing other modules that can be processed differently.

Figure 11 shows the two forms of a kernel launch during the GPU lowering. The inline form

uses the gpu.launch operation to define the kernel inline. A nested region implements the
kernel, and basic block arguments provide access to the thread and block identifiers. Explicit
parameter handling is not needed, since the values defined outside of the nested region remain
visible. The function form uses the gpu.func operation to implement the kernel as a separate
function in a dedicated module launched by the gpu.launch_func operation that represents
the kernel invocation. Special operations provide access to the thread and block identifiers. All
non-constant kernel arguments are passed in explicitly, while constants are propagated into the
kernel functions. Both the inline and the function form accept a GPU grid configuration and
support the declarative allocation of buffers in the different levels of the GPU memory hierarchy.
The kernel code expresses the computation for a single thread, following the SIMT model, and
specialized mechanisms provide access to the thread and block identifiers. GPU-specific primitives
such as barrier synchronization, shuffles, and ballots are only available inside a kernel launch.

2https://mlir.llvm.org/docs/Dialects/GPU/.
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Fig. 11. Lowering of an example kernel: (1) the inline form enables host device code motion and other trans-
formations, (2) the function form isolates the device code in a distinct module that enables device-specific
optimizations and separate host/device compilation, and (3) the binary embeds the kernel as constant data.

Additionally, Figure 11 illustrates the main steps of the GPU lowering, starting from the inline
form (left), through the function form (middle), down to the compiled binary (right). A parallel
loop nest can be converted in-place to the inline form, using loop bounds as GPU grid configura-
tion. After the conversion, we apply common subexpresison and dead code elimination, canoni-
calization and propagate constants inside the GPU kernel to minimize host/device memory traffic.
Common SSA-based transformations apply seamlessly across the host/device boundary, thanks to
the kernel being inlined with no visibility restrictions. The kernel is then outlined into a separate
function in a dedicated GPU module. Functions called by the kernel are copied into the module,
and values defined outside the kernel are passed in as function arguments. This results in ker-
nels living in a separate module to enable the separate host/device optimization and compilation.
The kernel bodies are no longer visible to intra-procedural optimizations on the host code. The
GPU module is finally converted through a dedicated dialect to a platform-specific representation
(e.g., PTX), and using the vendor compiler (e.g., ptxas) compiles further down to a binary. The
resulting binary is embedded as a global constant into the original module. This approach enables,
e.g., multi-versioning to support multiple architectures or kernel specialization for different-sized
workloads. The original module extended with the binary constants then becomes a regular host
module, which can be optimized, compiled, and executed. The kernel invocations thereby lower
into calls to the device driver library or runtime environment.

7 EVALUATION

We evaluate the Open Earth Compiler on real-world stencil programs derived from the most per-
formance critical parts of the COSMO and FV3 climate models and compare its performance to
state-of-the-art code generation frameworks.

7.1 Experimental Setup

We run our experiments on an NVIDIA Tesla V100-SXM2 with a memory bandwidth of 900 GB/s.
We benchmark two domain sizes 128 × 128 × 60 (small) and 256 × 256 × 60 (large) for single-
precision (f32) and double-precision (f64) floating-point numbers. We repeated all experiments
using 128 and 256 threads per block and did not observe significant runtime differences. We thus
present performance numbers for the smaller block size only. For all benchmarks, we report the
median runtime of 100 measurements, and red error bars show the quartile runtime to quantify
the measurement error. We do not time the initial kernel executions to avoid startup overheads.
Additionally, we use the nvprof profiler to collect detailed performance data on the NVIDIA system.
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Table 2. Characteristics of our Benchmarks

Name Dims Apply Ops Inputs/Outputs Arith. Ops Access Ops Control Flow

hdiffsa 2 4 4 / 1 21 22 min

C
O

S
M

Ohdiffsmag 2 6 8 / 2 56 38 min/max
hadvuv 2 8 6 / 2 80 45 if
hadvuv5th 2 8 6 / 2 112 53 if
fastwavesuv 3 6 9 / 2 43 32 -

p_grad_c 3 3 7 / 2 24 25 -

F
V

3

nh_p_grad 3 5 8 / 2 47 48 -
uvbke 2 2 4 / 2 12 12 -
fvtp2d_qi 2 5 5 / 2 27 23 if
fvtp2d_qj 2 8 6 / 3 49 39 if
fvtp2d_flux 2 5 7 / 2 28 22 if

We guarantee correctness by comparing the outputs of all optimized kernel variants to naive C
versions and ensure the results are within a relative error of 10−5 (f32) or 10−10 (f64).

7.2 Benchmark Kernels

We evaluate our compiler for a set of representative benchmarks3 derived from the dynamical
cores of two popular climate and weather models. COSMO [2] is a regional numerical weather
prediction model used by seven national weather services in Europe. FV3 [3] is the dynamical
core of the CM4 and GEOS-5 global climate models and the global weather prediction system
of the US National Weather Service. The dominant algorithmic motif of both codes are stencil
computations on regular grids. Both models implement dozens of stencil operators to perform the
numerical forward integration in time. Due to the explicit time integration, most stencils are purely
horizontal with bounded domains of dependence. Some use the Thomas algorithm to perform
implicit integration in the vertical direction.

All our benchmarks are part of the explicit integration. The hadvuv and hadvuv5th kernels im-
plement third- and fifth-order horizontal advection, while the fvtp2d kernels implement a mono-
tone two-dimensional finite volume advection operator. The hdiffsa and hdiffsmag kernels perform
horizontal diffusion. The fastwavesuv kernel contains parts of the sound wave forward integration,
while the p_grad_c and nh_p_grad kernels compute the three-dimensional pressure gradient. Fi-
nally, the uvbke kernel is a preprocessing step for the kinetic energy computation in FV3.

Each benchmark executes an entire stencil program consisting of multiple stencil operators be-
ing applied on the three-dimensional domain. The stencil operators have different dimensionality
(from one- to three-dimensional), have different width (two- to five-point), and some of them con-
tain dynamic control flow. Table 2 lists core characteristics of our benchmarks such as the dimen-
sionality of the access patterns or the number of stencil operators, input/output arrays, arithmetic
operations, and stencil.access operations. We observe that all kernels have a low arithmetic in-
tensity (arithmetic operations per memory access), which explains why our compiler focuses on
transformations to increase the data-locality.

7.3 Effectiveness of Our Code Transformations

We first evaluate the effectiveness of the optimizing transformations discussed in Section 5.1. We
compare four optimization levels: (1) original, (2) inline, (3) inline+unroll(2), and (4) inline+unroll(4).
Optimization level (1) applies no optimizing transformations. Starting from level (2), we apply

3https://github.com/spcl/open-earth-benchmarks.
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Fig. 12. Runtimes at different optimization levels for f32 (top) and f64 (bottom) floating-point values for
256 × 256 × 60.

stencil inlining, and the levels (3), and (4) additionally perform stencil unrolling by factor two and
four, respectively.

Figure 12 compares the runtime for all benchmarks at different optimization levels. We show
data for the large problem size and f32 and f64 arithmetic and observe significant speedups for
stencil inlining independent of the benchmark. In comparison, stencil unrolling has a smaller effect
and sometimes is even detrimental to performance. In the plot, we annotate the speedup and the
runtime of the best-performing version. We also run all benchmarks on an AMD Radeon RX 5700
system with 448 GB/s memory bandwidth. We thereby measure a geometric mean speedup of 2.7×
and a total runtime of 4.1 ms for the best-performing versions (f32 arithmetic), compared to 3.0×
and 1.9 ms on the NVIDIA system. We thus attain comparable speedups and bandwidth rectified
performance on the AMD and NVIDIA systems despite the entirely different instruction set archi-
tectures and runtime environments, demonstrating the effectiveness of our vendor-independent
GPU execution model (cf. Section 6).

Inlining all stencil operators eliminates the accesses of temporary buffers and ensures the pro-
gram inputs are loaded precisely once. We thus expect stencil inlining to have a strong perfor-
mance effect due to the resulting bandwidth reduction and despite the redundant computation.
Figure 13 confirms that stencil inlining reduces the data movement between the device memory
and the L2 cache (bottom), quantifies the extra computation (top) but also shows that stencil inlin-
ing eliminates parts of the index computation (middle). Overall the bandwidth reduction and the
eliminated index computation overcompensate the additional redundant computation, especially
given the low arithmetic intensity of our kernels.

Stencil unrolling removes redundant computations and improves the data-locality in case the
data accesses of the unrolled loop iterations overlap. Figure 13 confirms that stencil unrolling re-
duces both redundant computation (top) and index computation (middle). We also observe less
device memory transactions (bottom) for the three-dimensional fastwavesuv, nh_p_grad, and
p_grad_c kernels due to improved data-locality. At the same time, stencil unrolling increases the
register pressure and reduces the available parallelism. Unrolling the hdiffsmag kernel, for exam-
ple, increases the register usage from 72 to 96 registers and conversely reduces the occupancy
from 40% to 29%. As a result, unrolling increases the runtime from 0.235 ms to 0.248 ms. We thus
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Fig. 13. Number of float instructions, integer instructions, and the device memory transactions at different
optimization levels and compared to Stella (COSMO) (left) and FV3 (Dawn) (right) implementations (cf. Sec-
tion 7.4) for f64 floating-point values and 256 × 256 × 60 (collected using nvprof).

Fig. 14. Utilization of the peak compute throughput (top) and the peak memory bandwidth (bottom) for the
best-performing kernel variants in percent (collected using nvprof).

do not expect all stencil programs to benefit from stencil unrolling. Instead, the optimization’s
effectiveness depends on the complexity of the stencil program (register pressure), the available
parallelism, and the potential bandwidth reduction.

Figure 14 illustrates the memory bandwidths and compute throughputs achieved by the best-
performing kernel versions. We observe very high memory bandwidth utilization up to 86% and
low compute utilization below 22%. These results demonstrate the importance of aggressive stencil
inlining and confirm the redundant computation is less of a concern.

In summary, we show that our code transformations yield significant speedups. Selecting the
optimal unroll factor or finding good fusion choices for a specific benchmark and target system

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021.



Domain-Specific Multi-Level IR Rewriting for GPU 51:17

Fig. 15. Speedup of our compiler over Stella (COSMO) (top left), Dawn (FV3) (top right), and Halide (bottom)
for f32 and f64 floating-point values for 128 × 128 × 60 and 256 × 256 × 60.

combination is not the scope of our work. Instead, we employ empirical tuning to find the best
unroll factor and always fuse all stencil operators (optimizing larger stencil programs will require
a fusion heuristic).

7.4 Comparison to State-of-the-art Solutions

We now compare the runtime of our optimized kernels to Stella [24] and Dawn [42] generated
CUDA [41] implementations. Stella is a C++ embedded DSL used to run the GPU version of
COSMO in production. Dawn is a research compiler that lowers a high-level climate IR to efficient
CUDA code. Both implement overlapped tiling [27] using shared memory and stream data [46] in
registers along the k-dimension. This execution model limits the redundant computation to the tile
boundaries reduces the parallelism in the k-dimension. In comparison, our stencil inlining plus un-
rolling performs redundant computation at the thread level but requires no thread synchronization
during the kernel execution.

We further benchmark the Halide [44] image processing framework. It is an industry-grade
compiler that lowers a domain-specific data flow language to target specific code. While its data
flow language is a good fit for plain stencil computations, it is not designed to express loop-carried
dependencies as they appear in weather and climate (cf. Section 4.5). In contrast to our compiler
and the other domain-specific solutions, Halide performs aggressive floating-point optimizations
that affect the precision of the results (e.g., fused multiply-add, approximate divisions, and opera-
tion reordering). While these limitations prevent a broad adoption in weather and climate, we still
compare to Halide, since it is a widely accepted reference for stencil compilers.

Figure 15 compares for all benchmarks the best-performing variant generated by the Open Earth
Compiler to their Stella (COSMO) and Dawn (FV3) counterparts as well as to Halide variants. We
are performance-competitive to Halide and attain geometric mean speedups that range from 1.4×
to 2.2× compared to Stella and Dawn.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 51. Publication date: September 2021.



51:18 T. Gysi et al.

Fig. 16. GT4Py version of the example stencil program.

We attribute the performance of our compiler to the simple execution model. It fuses all sten-
cil operators and stores temporaries in registers to limit the data movement, and it introduces
redundant computation instead of thread synchronizations to avoid parallelization overheads.
Its only disadvantage is the redundant computation, which due to the low arithmetic inten-
sity of our kernels shown in Figure 14, is less critical. In Figure 13, we indeed observe lower
device memory bandwidth requirements (bottom) and notable amounts of redundant computa-
tion (top) compared to Stella (COSMO) and Dawn (FV3) implementations. Having compile-time
information about storage shapes and iteration domains in return eliminates parts of the index
computation (middle). Avoiding synchronizations at the cost of additional computation and uti-
lizing compile-time information, thus turn out to be beneficial compared to the Stella and Dawn
execution models.

In contrast, Halide and our compiler perform stencil inlining and unrolling. We configure both
compilers to inline all stencil operators, tune the unroll factor using the same search space, and
enable our compiler’s fast math flag to account for Halide’s aggressive floating-point optimizations.
As a result, the two compilers attain similar performance.

The compilation times and the sizes of the generated binaries across all compilers and kernels
are comparable. We measure compilation times and binary sizes ranging from 3 to 12 seconds
and 50 to 800 kB, respectively. Our compiler thereby spends 95% of the execution time in the
low-level GPU code generation, demonstrating the domain-specific compilation’s low cost. Low-
level overheads consequently hide possible compile-time differences among the different domain-
specific solutions.

Our compiler outperforms Stella and Dawn, demonstrating the potential of stencil inlining
and unrolling compared to overlapped tiling and streaming. While Stella and Dawn’s execution
model may have been the design sweet-spot for the target hardware at the time, stencil inlin-
ing and unrolling seem favorable on modern hardware. We also attain performance parity com-
pared to Halide, the standard solution in the image processing domain, emphasizing our compiler’s
quality.

7.5 Lowering User-facing Code to the Stencil Dialect

We design our Stencil dialect as a target for user-facing domain-specific languages. To study the
feasibility of such a lowering, we integrate our compiler with GridTools for Python (GT4Py) [5],
an embedded domain-specific language for weather and climate.

In Figure 16, we show a GT4Py version of the example stencil program introduced in Section 4.1.
GT4Py lowers the user code to an internal IR, consisting of a compute domain, data field descrip-
tors, and a set of computations in the form of an abstract syntax tree (AST). We traverse the
AST to emit MLIR, compile the resulting MLIR program to a binary, and produce Python bindings
to link the generated binary to the calling program.

The functional lowering demonstrates our compiler’s applicability in the context of an end-to-
end solution for the weather and climate domain.
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8 RELATED WORK

Accelerated systems made programming model innovations inevitable. Kokkos [16] and Raja [6]
are C++ performance portability layers. Kruse and Finkel [28] propose compiler directives to con-
trol generalized loop transformations. PENCIL [9] and Polly-ACC [21] automate the accelerator
mapping using the polyhedral model. DaCe [12] allows performance engineers to select and de-
velop target-specific transformations. All approaches are generic and, for the same level of perfor-
mance and automation, solve a more complex problem than a domain-specific compiler.

Machine learning today drives the development of domain-specific compilers [13, 31]. The age
of stencil compilers started even earlier: Halide [44] and Polymage [38] tune image processing
pipelines, Pochoir [54] implements cache-oblivious tiling, SDSLc [45] supports many targets
(SIMD, GPU, and FPGA), Panda [51] supports distributed memory, and YASK [58] specifically
targets Intel processors. Lift [25] has also been shown effective for stencil codes. This diversity
demonstrates the importance of a shared compiler infrastructure.

Multiple projects work on solutions for weather and climate. The CLIMA [1] effort develops a
novel earth system model using the Julia language. The LFRic [8] climate modeling system relies
on the Python-based PSyclone compiler. The Dawn [42] compiler lowers a high-level IR that has se-
quential semantics. Stella [24] and GridTools [4] use C++ template metaprogramming to support
CPU and GPU systems. CLAW [14] and Hybrid Fortran [39] extend Fortran to achieve perfor-
mance portability. Despite their heterogeneity, all of them could benefit from a shared compiler
infrastructure.

Several frameworks support the development of domain-specific compilers. AnyDSL [32] sup-
ports partial evaluation using minimal annotations in the Impala front end language. Lightweight
modular staging [49] is a technique that uses Scala’s type system to transform codes before their
execution. It forms the basis of the Delite [53] compiler framework. Lua script similarly supports
staging via the Terra [15] low-level language. Lift [52] finally combines a functional language and
rewrite rules to generate performance portable code. MLIR [30] is the only full-fledged compiler
infrastructure among these contenders, not limited in terms of optimizations, and not tied to a
particular front-end language.

Stencil optimizations for GPU targets are a well-researched topic. Tiling [18, 19, 27, 33, 34, 40]
and fusion [22, 48, 57] are the core optimizations for bandwidth-limited low-order stencils as they
appear in weather and climate. Other works optimize the resource utilization [46, 47] or discuss
the optimization of high-order stencils [45, 59]. Our compiler implements a variant of overlapped
tiling [27] that introduces redundant computation for every thread.

9 CONCLUSION

We introduced multi-level IR rewriting, an approach to build reusable components for domain-
specific compilers. This approach is illustrated through the design and implementation of the Open
Earth Compiler, which provides a high-performance compilation flow for weather and climate
modeling. We demonstrated that, thanks to multi-level IR rewriting, a small yet self-consistent set
of high-level operations specifically designed for stencil computations is sufficient to achieve better
performance than state-of-the-art DSL compilers. Contrary to the latter, the Open Earth Compiler
relies on existing and new reusable compiler abstractions, including the GPU kernel abstraction
we introduced, by decoupling domain-specific and target-specific code transformations. Our eval-
uation of 11 stencil programs relevant to existing climate models, COSMO and FV3, demonstrates
that the Open Earth Compiler, compared to state-of-the-art solutions for weather and climate,
generates up to 3.4× faster code and delivers a geomean speedup between 1.4× and 1.8× across
problem sizes and precisions. We suggest that multi-level IR rewriting and the associated design
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principles are a promising approach to rapidly design and deploy domain-specific compilers that
can take advantage of the reusable components of the MLIR ecosystem.
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