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Abstract—The capacity of offloading data and control tasks to
the network is becoming increasingly important, especially if we
consider the faster growth of network speed when compared
to CPU frequencies. In-network compute alleviates the host
CPU load by running tasks directly in the network, enabling
additional computation/communication overlap and potentially
improving overall application performance. However, sustaining
bandwidths provided by next-generation networks, e.g., 400
Gbit/s, can become a challenge. sPIN is a programming model
for in-NIC compute, where users specify handler functions that
are executed on the NIC, for each incoming packet belonging
to a given message or flow. It enables a CUDA-like acceleration,
where the NIC is equipped with lightweight processing elements
that process network packets in parallel. We investigate the
architectural specialties that a sPIN NIC should provide to enable
high-performance, low-power, and flexible packet processing. We
introduce PsPIN, a first open-source sPIN implementation, based
on a multi-cluster RISC-V architecture and designed according
to the identified architectural specialties. We investigate the
performance of PsPIN with cycle-accurate simulations, showing
that it can process packets at 400 Gbit/s for several use cases,
introducing minimal latencies (26 ns for 64 B packets) and
occupying a total area of 18.5 mm2 (22 nm FDSOI).

Index Terms—in-network compute, packet processing, special-
ized architecture, sPIN.

I. MOTIVATION

Today’s cloud and high-performance datacenters form a
crucial pillar of compute infrastructures and are growing at
unprecedented speeds. At the core, they are a collection
of machines connected by a fast network carrying petabits
per second of internal and external traffic. Emerging online
services such as video communication, streaming, and on-
line collaboration increase the incoming and outgoing traffic
volume. Furthermore, the growing deployment of specialized
accelerators and general trends towards disaggregation exac-
erbates the quickly growing network load. Packet processing
capabilities are a top performance target for datacenters.

These requirements have led to a wave of modernization in
datacenter networks: not only are high-bandwidth technologies
going up to 200 Gbit/s gaining wide adoption but endpoints
must also be tuned to reduce packet processing overheads.
Specifically, remote direct memory access (RDMA) networks
move much of the packet and protocol processing to fixed-
function hardware units in the network card and directly access

data into user-space memory. Even though this greatly reduces
packet processing overheads on the CPU, the incoming data
must still be processed. A flurry of specialized technologies
exists to move additional parts of this processing into network
cards, e.g., FPGAs virtualization support [22], P4 simple
rewriting rules [13], or triggered operations [9].

Streaming processing in the network (sPIN) [28] defines a
unified programming model and architecture for network ac-
celeration beyond simple RDMA. It provides a user-level inter-
face, similar to CUDA for compute acceleration, considering
the specialties and constraints of low-latency line-rate packet
processing. It defines a flexible and programmable network
instruction set architecture (NISA) that not only lowers the
barrier of entry but also supports a large set of use-cases [28].
For example, Di Girolamo et al. demonstrate up to 10x
speedups for serialization and deserialization (marshalling) of
non-consecutive data [20].

While the NISA defined by sPIN can be implemented on
existing SmartNICs [1], their microarchitecture (often standard
ARM SoCs) is not optimized for packet-processing tasks. In
this work, we define an open-source high-performance and
low-power microarchitecture for sPIN network interface cards
(NICs). We break first ground by developing principles for
NIC microarchitectures that enable flexible packet processing
at 400 Gbit/s line-rate.

As core contributions in this work, we
‚ establish principles for flexible and programmable NIC-

based packet processing microarchitectures,
‚ design and implement a fully-functional 32-core SoC for

packet processing that can be added into any NIC pipeline,
‚ analyze latencies, message rates, and bandwidths for a large

set of example processing handlers, and
‚ open-source the SoC design to benefit the community.

We implement PsPIN in synthesizable hardware description
language (HDL) code. Overall, it occupies less than 20mm2

in a 22nm FDSOI process, which is about 25x smaller than
an Intel Skylake Xeon die. We show how, given the nature of
in-network compute tasks, a PsPIN unit can achieve similar
or higher throughput than more complex architectures, like
Xeon- or ARM- based ones by using at most 6.3W.



Solution L P G U Notes

Azure AccellNet [22] � , - , FPGA-based NICs; Flow-steering.
P4 [13]˚, FlexNIC [32] � - - , Packet steering and rewriting. FlexNIC adds memory support. ˚Runs on NICs and switches.
Mellanox SHARP [24] � , - � Data aggregation and reduction. Runs on switches.
Portals 4 [9], INCA [49] - - , � Sequences of predefined actions can be expressed with triggered operations. Both target NICs.
Mellanox CORE-Direct [25] � - , � Sequence of predefined actions can be chained. Targets switches.
Cray Aries Reduction Engine [6] � , - � Data reductions (up to 64 bytes). Runs on switches.
Quadrics [43], Myrinet [16] � � - , Users define threads to run on the NIC / NIC is re-programmable by users.
SmartNICs [2], [1] - � � , Runs full linux stack on the NIC; Offloading of new code requires flashing.
FPGA packet parsing pipeline [8] � - - , Only packet parsing, read-only packets, might require FPGA reconfiguration. Target NICs.
eBPF (host) [39] , - - , Runs user-defined code (eBPF code) in virtual machine in the OS kernel.
eBPF (Netronome) [33], hXDP [15] � - - , eBPF programs can be offloaded to NIC.
DPDK [46] , � - , Runs in user space. Applications can poll for new raw packets from the NIC.
StRoM [51] � � , , Handlers for DMA streams are implemented on FPGA NIC.
NICA [21] � � , , Bind kernels running on on-NIC accelerators to user sockets.
PANIC [36] � � � , Applications compose execution of pre-installed compute units. Targets NICs.
sPIN [28] � � � � Applications define C/C++ packet handlers to map to different messages/flows. Targets NICs.

TABLE I
L: LOCATION (� ON NICS OR SWITCHES; - ON NICS BUT OUTSIDE THE PACKET PIPELINE; , ON HOST CPU). P: PROGRAMMABILITY (� FULLY

PROGRAMMABLE; - LIMITED PROGRAMMABILITY; , PREDEFINED FUNCTIONS). G: GRANULARITY (� MESSAGE AND PACKETS; - ONLY PACKETS;
, ONLY MESSAGES). U: USABILITY (� USABLE BY APPLICATIONS AND PRIVILEGED USERS; , ONLY BY PRIVILEGED USERS).

II. IN-NETWORK COMPUTE

In-network compute is the capability of an interconnection
network to process, steer, and produce data according to a
set of programmable actions. The exact definition of action
depends on the specific in-network-compute solution: it can
vary from pre-defined actions (e.g., pass or drop a packet
according to a set of rules) to fully programmable packet or
message handlers (e.g., sPIN handlers).

There are several advantages of computing in the network:
(1) More overlap. Applications can define actions to execute
on incoming data. Letting the network execute them allows
applications to overlap these tasks with other useful work;
(2) Lower latency. The network can promptly react to in-
coming data (cf. Portals 4 triggered operations [9], virtual
functions [22], sPIN handlers), immediately executing actions
depending on it. Doing the same on the host requires appli-
cations to poll for new data, check for dependent actions, and
then execute them. (3) Higher throughput. Some in-network-
compute solutions enable stream processing of the incoming
data. For example, sPIN can run packet handlers on each
incoming packet, potentially improving the overall throughput.
(4) Less resource contention. Running tasks in the network can
reduce the volume of data moved through the PCIe bus and the
memory hierarchy. This implies fewer data movements, less
memory contention and cache pollution, potentially improving
the performance of host CPU tasks.

Table I surveys existing in-network-compute solutions. This
classification focuses on the high-level characteristics of these
solutions, comparing them by the location where policies are
run, the level of programmability, the granularity at which the
actions are applied, and their usability.
(L) Location. Policies can be executed at different points
along the path from the endpoint sending the data to the end-
point receiving it. We classify in-network-compute solutions
as: � running in network devices (e.g., on NICs or switches);
- running in network devices but not on the packet pipeline
(e.g., SmartNICs act as close-to-network endpoints, running
full Linux stack); , if they run on the host CPUs.

(P) Programmability. It defines the expressiveness of the
actions. Network solutions enabling fully programmable ac-
tions that can access the message/packet header and payload,
access the NIC and host memory, and issue new network
operations (e.g., RDMA put or gets) are marked with �.
Solutions that provide a predefined set of actions that can be
composed among themselves (e.g., P4 match-actions or Portals
4 triggered operations) are marked with -. Solutions providing
only predefined functions are marked with ,.
(G) Granularity. Actions can be applied to full messages (,),
requiring to first fully receive the message, or to single packets,
as they are received (-). Solutions enabling both types of
actions are marked with �.
(U) Usability. It defines which entities can install actions
into the network. In-network-compute solutions enabling user
applications and libraries (even in multi-tenant settings) to
install actions are marked with �. Solutions that require
elevated privileges, service disruption, and/or device memory
flashing to install new actions are marked with ,.

Among the solutions of Table I, sPIN is the only one letting
user-space applications define per-message or per-packet tasks
(called handlers) that are executed in the NIC. sPIN handlers
can access and modify packet data, share NIC memory, and
issue NIC and DMA commands. Handlers can be installed on
the NIC without disrupting operations and memory isolation
must be guaranteed (see Section III-B2). For these reasons,
we focus on the sPIN programming model, investigate the
challenges of building a sPIN engine, and introduce PsPIN,
a general and open-source sPIN implementation. By open-
sourcing the hardware design of PsPIN under a permissive
open-source license (Solderpad), we want to encourage its
usage and foster the creation of prototypes by anyone in the
community.

A. sPIN: Streaming processing in the network
The key idea of sPIN is to extend RDMA by enabling

users to define simple processing tasks, called handlers, to
be executed directly on the NIC. A message sent through the
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Fig. 1. sPIN abstract machine model.

network is seen as a sequence of packets: the first packet is
defined as header, the last one as completion, and all the
intermediate ones as payload. As the packets of a message
reach their destination, the receiving NIC invokes the respec-
tive packet handlers. For each message, three types of handlers
are defined: the header handler, executed only on the header
packet; the payload handler, executed on all the packets, and
the completion handler, executed after all packets have been
processed. Handlers are defined by applications running on
the host and cross-compiled for the NIC microarchitecture.
The programming model that sPIN proposes is similar to
CUDA [40] and OpenCL [52]: the difference is that in these
frameworks, applications define kernels to be offloaded to
GPUs. In sPIN, the kernels (i.e., handlers) are offloaded to the
NIC, and their execution is triggered by the arrival of packets.
Figure 1 sketches the sPIN abstract machine model.

Host applications define packet handlers and associate them
with message descriptors. Packet handlers are optional: e.g.,
by specifying either the header or completion handler and no
payload handler, only one packet handler for the full message
will be executed. Message descriptors, together with packet
handlers, are installed into the NIC. Incoming packets are
matched to message descriptors and handlers are executed on
Handler Processing Units (HPUs). Handlers can also issue NIC
commands and DMA transfers to/from the host memory.

1) Architectural Specialties: The sPIN abstract machine
model specifies a streaming execution model with microar-
chitectural requirements that are quite different from clas-
sical specialized packet processing engines, which normally
constraint the type of actions that can be performed or the
entity that can program them, and traditional compute cores.
We now outline a set of architectural properties that a sPIN
implementation should provide to enable fully-programmable
high-performance packet processing.
S1. Highly parallel. Many payload packets can be processed
in parallel. The higher the number of HPUs, the longer the
handlers can run without becoming a bottleneck.
S2. Fast scheduling. Arriving packets must be scheduled
to HPU cores while maintaining ordering requirements that
mandate that header handlers execute before payload handlers
that execute before completion handlers.
S3. Fast explicit memory access. Packet processing has low
temporal locality by definition (a packet is seen only once),
hence scratchpad memories are better than caches.
S4. Local handler state. Handlers can keep state across
packets of a message as well as multiple messages. If the
memory is partitioned, then scheduling needs to ensure that
the state is reachable/addressable.

S5. Low latency, full throughput. To minimize the time a
packet stays in the NIC, the time from when the packet is seen
by sPIN to when the handlers execute should be minimized.
Furthermore, the sPIN unit must not obstruct line-rate.
S6. Area and power efficiency. To lead to an easier integra-
tion of a sPIN unit in a broader range of NIC architectures.
S7. Handler isolation. Handlers processing a message should
not be able to access memory belonging to other messages,
especially if they belong to different applications.
S8. Configurability. A sPIN unit should be easily re-
configurable to be scaled to different network requirements.

III. PSPIN
PsPIN is a sPIN implementation designed to match the

architecture specialties of Section II-A1. PsPIN builds on top
of the PULP (parallel ultra-low power) platform [48], a silicon-
proven [23] and open [55] architectural template for scalable
and energy-efficient processing. PULP implements the RISC-
V ISA [59] and organizes the processing elements in clusters:
each cluster has a fixed number of cores (32-bit, single-issue,
in-order) and single-cycle-accessible scratchpad memory (S3).
The system can be scaled by adding or removing clusters (S1).
We have implemented all hardware components of PsPIN in
synthesizable hardware description language (HDL) code.

A. Architecture Overview
PsPIN has a modular architecture, where the HPUs are

grouped into processing clusters. The HPUs are implemented
as RISC-V cores, and each cluster is equipped with a single-
cycle access scratchpad memory called L1 memory. All clus-
ters are interconnected to each other (i.e., HPUs can access
data in remote L1s) and to three off-cluster memories (L2): the
packet buffer, the handler memory, and the program memory.
Figure 2 shows an overview of how PsPIN integrates in a
generic NIC model and its architecture. We adopt a generic
NIC model to identify the general building blocks of a NIC
architecture. Later, in Section III-D, we discuss how PsPIN
can be integrated in existing NIC architectures.
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Fig. 2. NIC model and PsPIN architecture overview.

Host applications access program and handler memories to
offload handlers code and data, respectively. The management
of these memory regions is left to the NIC driver, which
is in charge of exposing an interface to the applications in
order to move code and data. The toolchain and the NIC
driver extensions to offload handlers code and data are out
of the scope of this work. Once both code and data for the
handlers are offloaded, the host builds an execution context,



which contains: pointers to the handler functions (header,
payload, and completion handlers), a pointer to the allocated
handler memory, and information on how to match packets
that need to be processed according to this execution context.
The execution context is offloaded to the NIC and it is used
by the NIC inbound engine to forward packets to PsPIN.

Receiving data. Data is received by the NIC inbound engine,
which is normally interfaced with the host for copying it to
host memory. In a PsPIN-NIC, the inbound engine is also
interfaced to the PsPIN unit. The inbound engine must be able
to distinguish packets that need to be processed by PsPIN from
the ones taking the classical non-processing path. To make this
distinction, it matches packets to PsPIN execution contexts
and, if a match is found, it forwards the packet to the PsPIN
unit. Otherwise, the packet is copied to the host as normal.
While some networks already have the concept of packet
matching (e.g., RDMA NICs match packets to queue pairs),
in others this concept is missing and needs to be introduced
to enable packet-level processing (see Section III-D).

Packets to be processed on the NIC are copied to the L2
packet buffer. Once the copy is complete, the NIC inbound
sends a Handler Execution Request (HER) to PsPIN’s packet
scheduler. The HER contains all information necessary to
schedule a handler to process the packet, which are a pointer
to the packet in the L2 packet buffer and an execution context.
If the packet buffer is full, the NIC inbound engine can
either back pressure the senders [30], send explicit congestion
notifications [47], drop packets, or kill connections [9]. The
exact policy to adopt depends on the network in which PsPIN
is integrated and the choice is similar to the case where the
host cannot consume incoming packets fast enough.

The packet scheduler selects the processing cluster that pro-
cesses the new packet. The cluster-local scheduler (CSCHED)
is in charge of starting a DMA copy of the packets from the
L2 packet buffer to the L1 Tightly-Coupled Data Memory
(TCDM) and selecting an idle HPU (H) where to run handlers
for packets that are available in L1. Once the packet processing
completes, a notification is sent back to the NIC to let it update
its view of the packet buffer (e.g., move the head pointer in
case the packet buffer is managed as a ring buffer).

Sending Data. Packet handlers, in addition to processing the
packet data, can send data over the network or move data
to/from host memory. To send data directly from the NIC, the
sPIN API provides an RDMA-put operation: When a handler
issues this operation, the PsPIN runtime translates it into a
NIC command, which is sent to the NIC outbound engine.
If the NIC outbound engine cannot receive new commands,
the handler blocks waiting for it to become available again.
The NIC outbound can send data from either the L2 packet
memory, the L2 handler memory, or L1 memories, or it can
specify a host memory address as data source, behaving as
a host-issued command. To move data to/from the host, the
handlers can issue DMA operations: These operations translate
to commands that are forwarded to the off-cluster DMA
engine, which writes data to host memory through PCIe.
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B. Control path
Figure 3 shows the PsPIN control path, which includes:

1 receiving HERs from the NIC inbound engine, 2 schedul-
ing packets, handling commands from the handlers, and
7 sending completion notifications back to the NIC.

1) Inter-cluster packet scheduling: PsPIN is informed of
new packets to process by receiving HERs from the NIC
inbound engine 1 . The HER is received by the packet
scheduler, which is composed of the Message Processing
Queue (MPQ) engine and the task dispatcher. The MPQ en-
gine handles scheduling dependencies between packets. These
dependencies are defined by the sPIN programming model:
‚ the header handler is executed on the first packet of a mes-

sage and no payload handler can start before its completion;
‚ the completion handler is executed after the last packet of a

message is received and all payload handlers are completed.
A message is a sequence of packets mapped to an MPQ and
matched to an execution context. We let the NIC define the
packets that are part of a message or flow. Once the last packet
of a message arrives, the NIC marks the corresponding HER
with an end-of-message flag, letting PsPIN run the completion
handler when all other handlers of that MPQ complete.
Task dispatcher. The task dispatcher selects the processing
cluster where to forward a task for its execution 3 . We
introduce a dedicated hardware unit for dispatching packets
to clusters. A software solution would not provide enough
bandwidth to schedule packets at line rate. If we consider a
target bandwidth of 400 Gbit/s and 64 B packets, we get one
packet every 1.28 ns, which requires to schedule a packet every
1.28 cycles on average. A cluster can accept new tasks when
it has enough space in its L1 to store the packet data. We use
the message ID, which is included in the HER, to determine
the home cluster of a message: the task dispatcher tries to
schedule packets to their home clusters. If the home cluster
cannot accept it, then the least loaded cluster is selected. The
task dispatcher blocks if there are no available clusters.
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The rationale behind the concept of home cluster is given by

the fact that handlers processing packets of the same message



can share L1 memory, hence scheduling them on the same
cluster avoids remote L1 accesses. Figure 4 shows the memory
latency and bandwidth experienced by a single core when
copying data from local or remote memories using different
access types (i.e., load/stores, DMA). As each core can execute
one single-word memory access at a time, the latency for
accessing a chunk of data increases linearly with its size. The
DMA engine, on the other hand, moves data in bursts, so
multiple words can be “in-flight” concurrently.
Handler execution and completion notification. Within a
processing cluster, task execution requests are handled by the
cluster-local scheduler. We describe the details of intra-cluster
handler scheduling in Section III-B2. During their execution,
handlers can issue commands that are handled by a command
unit 4 . We define three types of commands to interact with
the NIC outbound and with the off-cluster DMA engine:
‚ NIC commands to send data over the network: a handler

can forward the packet or generate new ones.
‚ DMA commands to move data to/from host memory. The

host virtual addresses can be stored in application-defined
data structures in handler memory.

‚ HostDirect commands are similar to DMA commands but,
instead of a source address, they carry 32 B immediate data
that is written directly to the host memory address.

Command responses 5 are used to inform the handlers of
the completion of the issued commands or error conditions.

Once a handler terminates and there are no in-flight com-
mands for which a response is still pending, a completion
notification is generated 6 . The MPQ engine uses this
notification to track the state of message queues (e.g., mark
a queue as ready when the header handler completes). The
notification is also forwarded to the NIC inbound engine,
which uses it to free sections in the L2 packet buffer.
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2) Intra-cluster handler scheduling: Tasks are received by
the cluster-local scheduler (CSCHED) that is in charge of
scheduling them on the HPUs. For each new task, it starts
a DMA transfer of the packet data from L2 to L1. Moving
the packet data to L1 enables single-cycle access from the
cores. Once a transfer completes, the corresponding task is
popped from the queue and scheduled to an idle HPU. At 400
Gbit/s, a cluster receives tasks for 64 B packets every 5.12
ns on average (1.28 ns ¨ 4). This time budget is not sufficient
to handle intra-cluster scheduling in software. For comparison,
issuing a DMA command already takes 6 cycles. Furthermore,
having the scheduling algorithm running on the HPUs, e.g.,
in a cooperative scheduling approach, would require to run
it in a higher privilege mode in order to guarantee handlers

isolation, adding additional overheads. Hence, we opted for a
hardware intra-cluster scheduler, which also allowed us to have
a lighter runtime running on the HPUs. HPUs are interfaced
with a memory-mapped device, the HPU driver, from which
they can read information about the task to execute.

The PsPIN runtime running on the HPU consists of a loop
executing the following steps: (1) Read the handler function
pointer from the HPU driver. If the HPU driver has no
task/handler to execute, it stops the HPUs by clock-gating
it. When a task arrives, the HPU is enabled and the load
completes. (2) Prepare the handler arguments (e.g., packet
memory pointer). (3) Call the handler function. (4) Write to a
doorbell memory location in the HPU driver to inform it that
the handler execution is completed. The HPU driver sends a
completion notification as soon as it detects that there are no
in-flight commands issued by the completed task. The HPU
driver can buffer a completed task for which the completion
notification cannot be sent and start processing a new one.

Since multiple HPU drivers can send feedback and issue
commands at the same time, we use round-robin arbiters to
select, at every cycle, an HPU that can send a feedback and
one that can issue a command. Figure 5 shows an overview
of a PsPIN processing cluster. The figure shows only the
connections relevant to the scheduling processes and to the
handling of handler commands. In reality, the HPUs are also
interfaced to the cluster DMA engine and can issue arbitrary
DMA transfers from/to the accessible L2 handler memory.

Memory accesses and protection. Handlers processing
packets matched to the same execution context share the
L2 handler memory region that has been allocated by the
application when defining the execution context. Additionally,
each message shares a statically allocated scratchpad area in
the L1 of the home cluster. In particular, L1 memories, which
are 1 MiB each in our configuration, contain: the packet buffer
(32 KiB), the runtime data structure (e.g., HPU stacks, 8 KiB),
the message scratchpads (984 KiB). Scratchpads are allocated
through the NIC driver and associated with execution contexts.

To protect against illegal memory accesses and guarantee
handler isolation (S7), the HPU driver configures the RISC-V
Physical Memory Protection (PMP) unit [58] for each task,
allowing the core to access only a subset of the address
space (e.g., handler code, packet memory, L1 scratchpad).
The handlers are always run in user mode. In case of a
memory access violation or any other exception, an interrupt
is generated and handled by the PsPIN runtime. The exception
handling consists of resetting the environment (e.g., stack
pointer) for the next handler execution and informing the HPU
driver of the error condition. The HPU driver will then send
a command to the HostDirect unit to write the error condition
to the execution context descriptor in host memory. A failed
handler leads to the release of the occupied resources.

3) Monitoring and control: While processing packets on
the NIC, there are two scenarios that must be prevented to
ensure correct operation: (1) Packets of a message stop coming
and the end-of-message is not received. This can be due to
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factors such as network failure, network congestion, or bugs
in applications or protocols. (2) Slow handlers that cannot
process packets at line rate. To detect case (1), we use a
pseudo-LRU [27] solution on active MPQs (i.e., MPQs which
are receiving packets). Every time an MPQ is accessed (i.e.,
packet pushed to it), it is moved to the back of the LRU list.
If the candidate victim does not receive packets for more than
a threshold specified in the execution context of the message
that activated it, the MPQ is reset. This event is signaled to
the host through the execution context descriptor. Case (2) is
detected by the HPU drivers themselves by using a watchdog
timer that generates an interrupt on the HPU and causes the
runtime to reset it. The timer is configured according to a
threshold specified in the execution context either by the NIC
driver or the application itself. This case is handled similarly
to memory access violations by notifying the host of the error
condition through the execution context descriptor.

To understand the time budget available to the handlers,
Figure 6 shows the relation between handlers execution time
and line rate. We assume a PsPIN configuration with 32 HPUs.
On the left, it shows the maximum duration handlers should
have to process packets at line rate for different packet sizes,
in case of 200 Gbit/s and 400 Gbit/s networks. On the right, it
shows how the processing throughput is affected by handlers
duration for different packet sizes and network speeds.

C. Data path
We now discuss how data flows within PsPIN, explaining

the design choices made to guarantee optimal bandwidth. We
equip PsPIN with three interconnects: the NIC-Host inter-
connect, which interfaces the NIC and the host to PsPIN
memories; the DMA interconnect, which interfaces the cluster-
local DMA engines to both L2 packet buffer and handler
memories; and the processing-elements (PE) interconnect,
which allows HPUs to read from either L2 memories or remote
L1s. Both NIC-Host and DMA interconnect have wide data
ports (512 bit), while the PE interconnect is designed for finer
granularity accesses (32 bit). Since PsPIN is clocked at 1 GHz,
the offered bandwidth of these interconnects is 512 Gbit/s
and 32 Gbit/s, respectively. PsPIN’s on-chip interconnects,
memory controllers, and DMA engine are based on [35].

Figure 7 shows an overview of the PsPIN memories, inter-
connects, and units that can move data (in gray if they are
interfaced to but not within PsPIN). We identify three critical
data flows that require full bandwidth in order to not obstruct
line rate and optimize PsPIN data paths to achieve this goal.
‚ Flow 1: from NIC inbound to L2 packet buffer to clusters’

L1s. The NIC inbound writes packets to the L2 packet
buffer at line rate and, in the worst case, this data is always
copied to the L1s of the processing clusters by their DMA
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with 512 bit data width. Thin arrows represent 32 bit AXI4 connections.
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engines, before starting the handlers. The main bottleneck
of this data flow can be the L2 packet buffer, which is
accessed in both write and read directions.

‚ Flow 2: from L2/L1 to host memory. Assuming all handlers
copy the data to host, we have a steady flow of data
towards the host memory. The data source is specified in
the command issued by the handlers and can be either the
L2 packet buffer, the L2 handler memory, or the clusters’
L1s. This data is moved by the off-cluster DMA engine,
which interfaces to an IOMMU to translate the virtual
addresses specified in the handler command to physical
ones. The IOMMU is updated by the NIC driver when the
host registers memory that can be accessed by the NIC.

‚ Flow 3: from L2/L1 to NIC outbound. Similar to flow 2,
but the data is moved towards the NIC outbound engine.
We assume the NIC outbound has its own DMA engine,
which it uses to read data.
All the identified critical flows can involve the L2 packet

buffer. To avoid being a bottleneck, this memory must provide
full bandwidth to the NIC inbound engine and to the cluster-
local DMA engines (flow 1), plus it must provide full band-
width to the system composed of the NIC outbound engine and
the off-cluster DMA (flow 2 + flow 3), letting them reach up
to 256 Gbit/s read-bandwidth each under full load. To achieve
this goal, we implement the L2 packet buffer as 4 MiB, two-
ports full-duplex, multi-banked (32 banks) word-interleaved
memory. With 512 bit words, the L2 packet buffer is suitable
more for wide accesses than single (32 bit) load/store accesses
from HPUs. In fact, if handlers are going to frequently access
packets, then their execution context can be configured to let
PsPIN move packets to L1, before the handlers start. The
maximum bandwidth that the L2 packet buffer can sustain
is 512 Gbit/s per port, full duplex. This bandwidth can be
achieved in case there are no bank conflicts. One port of the L2
packet buffer is accessible through the NIC-Host interconnect,
where the NIC inbound engine is connected. Only the NIC
inbound engine can write through this port, hence it gets the
full write bandwidth. Other units connected to the NIC-Host
interconnect that can access the L2 packet buffer, namely
the NIC outbound engine and the off-cluster DMA engine,
share the read bandwidth. The second port is connected to
both DMA and PE interconnects. This configuration allows
supporting a maximum line rate of 512 Gbit/s, making PsPIN
suitable for up to 400 Gbit/s networks.



L2 handler and program memory. The L2 handler memory
is less bandwidth-critical than the L2 packet buffer, but not less
important. In the current configuration, the handler memory
is 4 MiB. The sPIN programming model allows the host
to access memory regions on the NIC to, e.g., write data
needed by the handlers or read data back when a message is
fully processed. Host applications can allocate memory regions
in this memory through the NIC driver, which manages the
allocation state. The host can copy data in the handler memory
before packets triggering handlers using it start arriving. For
example, Di Girolamo et al. [20] use this memory to store
information about MPI datatypes, deploying general handlers
that process the packets according to the memory layout
described in the handler memory. Differently from the packet
buffer, we foresee that the handler memory can be targeted
more frequently by the HPUs with 32-bit word accesses,
hence we adopt 64 bit-wide banks to reduce the probability of
bank conflicts. Similarly, to the L2 packet buffer, the handler
memory can be involved by flows 2 and 3 and offers a
maximum bandwidth of 512 Gbit/s per port, full duplex.

The program memory (32 KiB) stores handlers code. It is
accessed by the host to offload code and by the PE interconnect
to refill the per-cluster 4 KiB instruction cache. Since this
memory is not on the critical path, we implement it as single-
port, half-duplex, with 64 Gbit/s bandwidth. The per-cluster
instruction cache is 4-way set associative with 8 ports. The
concept of the home cluster, which tries to schedule packets
of the same message (i.e., same handlers’ code) to the same
cluster, helps to reduce instruction cache pollution.

D. NIC integration
We described PsPIN within the context of the NIC model

discussed in Section III-A but, how to integrate a PsPIN unit
in existing networks? To answer this question, we identify a set
of NIC capabilities, some of which are required for integrating
PsPIN, and others that are optional but can provide a richer
handler semantic. The required capabilities are:
Message/flow matching. Packet handlers are defined per
message/flow on the receiver side. The NIC must match a
packet to a message/flow to identify the handler(s) to execute.
We do not explicitly define messages or flows because this
depends on the network where PsPIN is integrated into. For
PsPIN, a message or flow is a sequence of packets targeting the
same message processing queue (MPQ, see Section III-B3).
The feedback channel to the NIC inbound engine is used
to communicate when an MPQ becomes idle and can be
remapped to a new NIC-defined message or flow.
Header first. The first packet that is processed by PsPIN
must carry the information characterizing the message. This
requirement can be relaxed if packets carry information to
identify a message or flow (e.g., TCP, UDP).

NICs can provide additional capabilities that can (1) extend
the functionalities that the handlers have access to and (2) let
the applications make stronger assumptions on the network
behavior. Applications can query the NIC capabilities, poten-
tially providing different handlers depending on the available

capabilities. One such capability is reliability. With a reliable
network layer, PsPIN is guaranteed to receive all packets of
a message and to not receive duplicated packets. With this
capability, applications can employ non-idempotent handlers.
Otherwise, the handlers have to take into account that, e.g.,
they can be executed more than once on the same packet.

1) Match-action tables: NICs providing match-action table
abstraction [44], [32], [13] are an ideal candidate for a PsPIN
integration. With this abstraction, users can install packet
parsing rules that lead to specific actions. To integrate PsPIN,
a new action should be made available that has the effect of
forwarding the matched packet to the PsPIN unit, together with
an execution context that is associated with the match-action
entry. This solution enables applications to define their own
concept of message or flow, providing the greatest flexibility.
For example, applications can define a flow as a TCP stream
(i.e., by matching on both IP and TCP headers) or as all
UDP packets targeting a specific port. This solution would
not be affected by ossification because the way flows are
defined can be programmed. For example, applications using
HTTP/2 [12] that multiplex multiple streams within the same
long-lived TCP connection can define a PsPIN message/flow
as a single stream (i.e., matching on the HTTP/2 header).
Similarly, transport protocols like QUIC [31] can match PsPIN
messages/flows on single streams of long-lived connections.

2) RDMA-Capable Networks: Remote Direct Memory Ac-
cess (RDMA) networks let applications expose memory re-
gions over the network, enabling remote processes to access
them for reading or writing data. When using RDMA, ap-
plications register memory regions on the NIC, so that its
IOMMU can translate virtual to physical addresses. Whenever
a remote process wants to, e.g., perform a write operation, it
has to specify where in the target memory the data has to be
written. This memory location can be directly specified by its
target virtual memory address in the write request [30], [6],
or indirectly [9]. In the indirect case, the application not only
registers the memory but also specifies a receive descriptor that
can be matched by incoming remote memory access requests:
e.g., in Portals 4, these descriptors are named list entries or
matched list entries according to whether they are associated
with a set of matching bits or not.

In general, RDMA NICs already perform the packet match-
ing on the NIC. In the direct case, the NIC matches the
virtual address carried by the request to a physical address.
In the indirect case, the NIC matches the packet to the receive
descriptor, to derive the target memory location. Hence, the
required message matching capability is provided; the question
is: to which object do we attach the PsPIN handlers? Table II
reports different RDMA-capable networks and objects where
the PsPIN handlers can be attached. For example, associating
handlers to the InfiniBand queue pair means that all packets
targeting that queue pair will be processed by PsPIN.

The second required capability is header first. For Infini-
Band, this is given by the in-order delivery that the network
already provides. For other networks that cannot guarantee
that, the NIC must be able to buffer or discard payloads
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InfiniBand [30], RoCE [53] ibverbs [11] Queue Pair
Bull BXI [19], Cray Slingshot [50] Portals 4[9] Match List Entry
Cray Gemini [7], Cray Aries [6] uGNI, DMAPP [5] Memory Handle

TABLE II
RDMA NETWORKS AND SPIN HANDLERS ATTACH POINTS.

packets arriving before the header packet. RDMA-capable
networks already implement reliability at the network layer,
hence applications can adopt non-idempotent handlers.

E. NIC driver
To expose packet-processing functionalities, the NIC driver

needs to implement the sPIN interface described by Hoefler
et al. [28]. In particular, the driver manages the NIC memory
by letting applications allocate memory regions for data (e.g.,
handler memory) and code (e.g., program memory). The
PsPIN unit is not involved in applications memory manage-
ment, which is delegated to the software layer. A detailed
description of a NIC driver is out of the scope of this work.

F. Special cases and exceptions
Can PsPIN deadlock if no processing cluster can accept new
tasks? In this case, the task dispatcher will block, waiting for
a queue to become available again and this will create back-
pressure towards the NIC inbound engine. The system cannot
deadlock because the processing clusters can keep running
since they are not dependent on new HERs to arrive. The
header-before-payloads dependency does not cause problems
because if payload handlers are waiting for the header, then
it is guaranteed that the header is being already processed
(because of the header-first requisite and the in-order schedul-
ing guaranteed by the MPQ engine on a per-message basis).
If badly-written handlers deadlock, the HPU driver watchdog
will trigger causing the handler termination.

What if a message is not fully delivered? The completion
feedback will not be triggered causing resources (e.g., message
state in the MPQ engine) to not be freed. PsPIN can detect
this case and force resource release (see Section III-B3).

How is encrypted traffic handled? Handlers are responsible for
the decryption of incoming data. We foresee the possibility
of supporting user handlers with libraries providing common
functions like crypto primitives. Given the modular design of
PsPIN, a per-cluster crypto engine can be deployed to en-
able hardware-accelerated crypto primitives (e.g., AES-EBC).
While a crypto engine for PULP (hence PsPIN-compatible)
already exist [26], we consider its evaluation as future work.

IV. EVALUATION

Our evaluation aims to answer the following questions: (1)
How big is PsPIN in terms of post-synthesis area and how does
that scale with the number of HPUs? (2) In which cases can
PsPIN sustain line rate? (3) Does the choice of implementing
sPIN on top of a RISC-V based architecture with a flat non-
coherent memory hierarchy pay off? What are the trade-offs
of choosing more complex architectures for sPIN?

Simulation environment. We simulate PsPIN in a cycle-
accurate testbench comprised of SystemVerilog modules.

We use synthesizable modules for all PsPIN components.
We develop simulation-only modules modeling the NIC
inbound and outbound engines. Our inbound engine takes a
trace of packets as input and injects them in PsPIN at a given
rate. The outbound engine reads data from PsPIN according
to the received commands, generating memory pressure. The
host interface is emulated with a PCIe model (PCIe 5.0, 16
lanes), implemented as a fixed-rate data sink. Unless otherwise
specified, we do not limit the packet generator injection rate in
order to test the maximum throughput PsPIN can offer. Packet
handlers are compiled with the PULP SDK, which contains
an extended version of GCC 7.1.1 (riscv32). All handlers are
compiled with full optimizations on (-O3 -flto).

A. Hardware Synthesis and Power
We synthesized PsPIN in GlobalFoundries’ 22 nm fully

depleted silicon on insulator (FDSOI) technology using Syn-
opsys DesignCompiler 2019.12, and we were able to close the
timing of the system at 1 GHz. We employ Invecas’ memory
compiler to generate SRAM macros that are tailored to the
architectural requirements. Area and power measurements
are summarized in Table III. Including memories, the entire
accelerator has a complexity on the order of 95 MGE.1 Of
the overall area, the four clusters (including their L1 memory
and the intra-cluster scheduler) occupy 43 %, the L2 memory
51 %, the inter-cluster scheduler 3 %, and the inter-cluster
interconnect and L2 memory controllers another 3 %. The L2
memory macros occupy a total area of 9.48 mm2. Depending
on the NIC architecture where PsPIN is integrated into, the L2
packet buffer could be mapped to the NIC packet buffer, saving
memory area. The area of the clusters is dominated by the L1
memory macros, which take 1.65 mm2 per cluster. The instruc-
tion cache and the cluster interconnect have a complexity of
ca. 700 kGE per cluster, which corresponds to ca. 0.2 mm2

at 70 % placement density. Each core has a complexity of
ca. 50 kGE, which corresponds to ca. 0.014 mm2. The total
cluster area is ca. 1.99 mm2. The total area of our architecture
is ca. 18.5 mm2 (S6). For comparison, from [37], [45] it can
be inferred that a Mellanox BlueField SoC, scaled to 16 ARM
A72 cores (22 nm), would occupy ca. 51mm2.

Component Area (mm2) Power (W)
Unit Total Perc. Unit Total Perc.

PsPIN 18.47 18.47 100.0% 6.08 6.08 100.0%
ë L2 memories (ˆ1) 9.48 9.48 51.3% 1.09 1.10 18.1%
ë Interconnect (ˆ1) 0.57 0.57 3.0% 0.71 0.71 11.7%
ë Cluster (ˆ4) 1.99 7.95 43.0% 0.94 3.77 62.0%
ë L1 (ˆ1) 1.65 1.65 82.9% 0.52 0.52 55.3%
ë Core (ˆ8) 0.01 0.08 4.0% 0.02 0.14 15.3%
ë Instr. cache (ˆ1) 0.08 0.08 4.0% 0.14 0.14 15.1%
ë Interconnect (ˆ1) 0.06 0.06 3.0% 0.11 0.11 11.3%

TABLE III
AREA AND ENERGY OF MAIN PSPIN COMPONENTS. PERCENTAGES ARE

RELATIVE TO THE PARENT COMPONENT.

We derive a worst-case upper bound for the power con-
sumption of our architecture by assuming 100 % toggle rate
on all logic cells and 50/50 % read/write activity at each
memory macro. The overall power envelope is 6.1 W, 99.8 %

1One gate equivalent (GE) equals 0.199µm2 in GF 22 nm FDSOI.



of which is dynamic power (S6). The four clusters consume
62 % of the total power, ca. 3.8 W. Within each cluster, the
L1 memory consumes ca. 55 % of the power. The L2 memory
consumes 18 % of the total power, ca. 1.1 W. The inter-cluster
scheduler consumes 8 % of the total power, ca. 0.5 W. The
inter-cluster interconnect and L2 memory controllers consume
11.7 %, ca. 0.7 W. As our architecture offers 32 HPUs, the
power normalized to the number of HPUs is 190 mW.

B. Microbenchmarks
We now investigate the performance characteristics of

PsPIN: we first discuss the latencies experienced by a packet
when being processed by PsPIN. Then, we study the maximum
packet processing throughput that PsPIN can achieve and how
the complexity of the packet handlers can affect it.

1) Packet Latency: We define the packet latency as the
time that elapses from when PsPIN receives an HER from
the NIC inbound engine to when the completion notification
for that packet is sent back to it. It does not include the time
needed by the NIC inbound engine to write the packet to the
L2 packet buffer. The measurements of this section are taken
in an unloaded system by instrumenting the cycle-accurate
simulation. Overall, we observe latencies ranging from 26 ns
for 64 B packets to 40 ns for 1024 B ones. In particular, a
task execution request takes 3 ns to arrive to the cluster-local
scheduler (i.e., CSCHED in Figure 5). At that point, the packet
is copied to the cluster L1 by the cluster-local DMA engine.
This transfer has latencies varying from 12 ns for 64 B packets
to 26 ns for 1024 B packets. Once the data reaches L1, the
task is assigned to an HPU driver in a single cycle. The HPU
runtime takes 7 ns to invoke the handler: this time is used for
reading the handler function pointer, setting up the handler’s
arguments, and making the jump. Once the handler completes,
the runtime makes a single-cycle store to the HPU driver to
inform it of the completion. The completion notification takes
1 ns to get back to the NIC inbound engine, but it can be
delayed of additional 6 ns and 2 ns in case of the round-robin
arbiters prioritize other HPUs and clusters, respectively.

2) Packet processing throughput: In Section III-C we de-
scribe three critical data flows that can run over a PsPIN unit.
Flow 1 (inbound flow) moves data from the NIC inbound
engine to the L2 packet memory and, from there, to the L1
memory of the processing cluster where the packet has been
assigned. Moving packet data to L1 memories is not always
needed. For example, a handler might only use the packet
header (e.g., filtering), the packet header plus a small part
of the packet payload (e.g., handlers looking at application-
specific headers), or they might not need packet data at all
(e.g., packet counting). Applications specify the number of
bytes that handlers need for each packet. Flows 2 and 3
move data from PsPIN to the outbound interfaces, namely
the NIC outbound (outbound NIC flow) and the host interface
through PCIe (outbound host flow). They are generated by the
handlers, which can issue commands to move data to the NIC
or to the host. Handlers do not necessarily issue commands
as they can directly consume data and communicate results to
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Fig. 8. PsPIN maximum throughput.
the host once the message processing finishes: e.g., handlers
performing data reductions on the NIC, letting the completion
handler write data to the host.
Inbound flow. We measure the throughput PsPIN can sustain
for the inbound flow. We measure it as function of the
frequency of the completion notifications received by the MPQ
engine and the packet size. Figure 8 (left) shows the through-
put for handlers executing different number of instructions (x-
axis) and for different packet sizes (i.e., 64 B, 512 B, and 1024
B packets). We also include: (1) the maximum throughput
that the PsPIN can achieve: this is the minimum between the
interconnect bandwidth and the cumulative bandwidth offered
by the 32 HPUs when executing x instructions; and (2) the
throughput for misaligned packets (i.e., packet size + 1 byte).
We let each handler execute x integer arithmetic instructions,
each completed in a single cycle. The x-axis can also be
read as handler duration in nanoseconds. The data shows how
PsPIN can schedule aligned packets at the maximum avail-
able bandwidth and the HPU runtime introduces minimum
overhead (i.e., 8 cycles per packet, see Section IV-B1).

Figure 8 (right) shows the maximum number of HPUs that
are utilized when running handlers executing x instructions,
for different packet sizes. PsPIN can schedule one 64 B packet
per cycle. Even with empty handlers, we need 19 HPUs to
process them because of the overhead necessary to invoke
the handlers. With bigger packets, the time budget increases:
handlers with small instruction counts can process 512 B and
1024 B packets at full throughput with a single HPU.
Inbound + outbound flows. We now study the throughput
offered when packets are received and sent out of PsPIN. The
execution context is configured to move the full packet to
L1. For testing the outbound NIC flow, we develop handlers
performing a UDP ping-pong: they swap source and desti-
nation IPs and UDP ports, then issue a NIC command to
send it back over the network. Overall, this handler consists
of 27 instructions (20 for the swap and 7 for the issuing the
command). The handlers for the outbound host flow only issue
a DMA command to move the packet to the host, without
modifying it. Figure 9 shows both the cases in which the
packet is sent from L1 and from the L2 packet buffer.
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The L2 packet buffer, with its 32 512-bit-wide banks,
is optimized for wide accesses, as the ones performed by
the DMA engines of the involved units. The L1 TCDM is
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optimized for serving 32-bit word accesses from the HPUs
and organized in 64 32-bit-wide banks. This difference shows
up in the throughput and it is caused by a higher number of
bank conflicts in the data-from-L1 case: with 64 B packets,
both the outbound flows hardly reach 200 Gbit/s when reading
from L1, while 400 Gbit/s is reached when reading data from
the L2. For bigger packets (ě512 B), the time budget is large
enough to allow also the L1 case to reach full bandwidth.

C. Handlers Characterization
To evaluate the performance of PsPIN for realistic packet

handlers, we select a set of use cases ranging from packet
steering to full message processing. We first show the through-
put they can achieve on PsPIN, then we measure the per-
core throughput achievable on PsPIN RISC-V and compare
it to the one achieved on more complex and powerful, but
bigger, architectures such as x86 and ARM. This comparison
aims to analyze costs and benefits of employing more complex
architectures for packet processing and to motivate our design
choice of employing simple RISC-V cores as HPUs. We
simulate a network with zero inter-packet-delay, in order to
not make our results network-bound and show the maximum
achievable throughput. The considered use cases are:
Data reduction. Reducing data of multiple messages is a
core operation of collective reductions [38] and one-sided
accumulations [29]. Given n messages, each carrying m data
items of type t, this operation computes an array of m entries
of type t where entry i is the reduction of the i-th data item
across the n messages. We benchmark an instance of this use
case (named reduce) with 512 packet, each carrying 512 32-
bit integers. Payload handlers accumulate data in L1 using the
sum operator. The completion handler informs the host that
the result is available with a a direct host write command.
Data aggregation. Utilized in, e.g., data-mining applica-
tions [34], this operation consists in accumulating the data
items carried by a message. This benchmark (aggregate) uses
a 1 MiB message of 32-bit integers that are summed up in L1.
The completion handler copies the aggregate to host memory.
Packet filtering/rewriting. Typical of intrusion-detection,
traffic monitoring, and packet sniffing systems [18]. For each
packet, it queries an application-defined hash table (in L2) by
using the source IP address (32-bit) as key. If a match is found,
the UDP destination port is overwritten with the matched value
and written to host memory. This benchmark, named filtering,
uses 512 messages and a hash table of 65,536 entries.
Key-Value cache. A key-value store (kvstore) cache on the
NIC. The cache is stored in L2 and is implemented as a set-
associative cache to limit the L2 accesses needed to maintain
the cache (e.g., eviction victims are chosen within a row).
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We generate a YCSB [17] workload of 1,000 requests (50/50
read/write ratio, θ=1.1). The cache associativity is set to 4 and
the total number of entries is set to 500. The set is determined
as the key (32-bit integer) modulo the number of sets.
Scatter. This use case (strided ddt) models data transfers that
are copied to the destination memory according to a receiver-
specified memory layout [38], [20]. This benchmark sends a 1
MiB message that is copied to host memory in blocks of 256
bytes and with a stride of 512 bytes. The layout description
(i.e., block size and stride) is stored in L2.
Histogram. Given a set of messages, it summarizes data
items by value. This application is common in distributed join
algorithms [10]. In our instance, we receive 512 messages,
each carrying 512 integers randomly generated in the r0, 1024s
interval. The handlers count how many data items per value
have been received and finally copy the histogram to the host.

1) Handler Throughput: Figure 10 shows the throughput
achieved by the considered handlers on PsPIN for different
packet sizes. We observe that PsPIN achieves 400 Gbit/s for
filtering, kvstore, and strided ddt already for 512 B pack-
ets. In the other cases, handlers are compute-intensive, and
they operate on every 32-bit word of each received packet.
Nonetheless, PsPIN achieves more than 200 Gbit/s, which the
state-of-the-art network speed, from 512 B packets. Thanks to
the modularity of this architecture (S8), a scenario where 400
Gbit/s must be sustained also for this type of workload can be
satisfied by doubling the number of processing clusters.

2) RISC-V vs x86 vs ARM: This set of experiments outlines
the benefits of adopting a simple, RISC-V-based architecture
over more powerful and complex ones, such as x86 and ARM.
We select two representative architectures, showing not only
the effects of different CPU types but also of different memory
subsystem configurations (e.g., caches vs scratchpads):
‚ ault 18-core 64-bit 2-way SMT, 4-way superscalar, out-of-

order-execution Intel Skylake Xeon Gold 6154 (3 GHz).
‚ zynq Xilinx Zynq ZU9EG MPSoC featuring a quad-core

ARM Cortex-A53 (64-bit 2-way superscalar at 1.2 GHz).
To run on these architectures, we develop a benchmark that
loads a predefined list of packets in memory, spawns a set
of worker threads, and statically assigns the packets to the
workers. This setting can be compared to an ideal DPDK
execution since the packets are already in memory and the
workers do not experience any DPDK-related overheads (e.g.,
polling device ports, copying bursts in local buffer). If not
otherwise specified, the packet size is set to 1 KiB.

Figure 11 (left) compares the per-core throughput of each
architecture, which is computed as function of the median
handler completion time when using a number of worker
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Fig. 12. Handlers performance on different architectures. For zynq and ault, we show the cases with one and four worker threads. The upper and lower
whiskers of the boxplot represent Q3` 1.5 ¨ IQR and Q1´ 1.5 ¨ IQR (Qi: i-th quartile; IQR: inter-quartile range), respectively.

threads equal to the number of available cores. Despite the fact
that this comparison is disadvantageous for PsPIN because it is
the one potentially experiencing the most memory contention
with its 32 cores, PsPIN shows better per-core throughput over
the best competitor for histogram (1.3x), kvstore (1.9x), and
reduce (5.3x). For less memory-bound workloads, the more
powerful cores of ault and zynq outperform PsPIN by up to
1.8x for aggregate, 40x for filtering, and 36x for strided ddt.

However, comparing the per-core throughput without fac-
toring in the area of each architecture is not fair (e.g., ault is
26x larger than PsPIN). Table IV summarizes area estimates
and shows the scaled area per processing element (Area/PE
(scaled)), which is the area per processing element (Area/PE)
scaled to the same production process (22 nm) and same
amount of memory per PE. Figure 11 (right) reports the
throughput normalized to the scaled area for the considered
architectures. PsPIN is up to 10.7x more area-efficient than
zynq (minimum: 2.6x for strided ddt) and up to 248x more
area-efficient than ault (minimum: 1.5x for filtering) on all
considered workloads. We conclude that, while it is expected
that more powerful architectures achieve higher raw through-
put for compute-intensive workloads, PsPIN provides better
area efficiency and can sustain line rate while fully offloading
packet processing to the NIC and freeing CPU resources.
Arch. Tech. Die area PEs Memory Area/PE Area/PE (scaled)

ault 14 nm 485 mm2 [4] 18 43.3 MiB 17.978 mm2 35.956 mm2

zynq 16 nm 3.27 mm2 [3] 4 1.125 MiB 0.876 mm2 1.752 mm2

PsPIN 22 nm 18.5 mm2 32 12 MiB 0.578 mm2 0.578 mm2

TABLE IV
ARCHITECTURAL CHARACTERISTICS. PE: PROCESSING ELEMENT

To gain more insights on the performance characteristics of
the selected handlers, Figure 12 shows a set of performance
metrics as measured on the considered architectures. We report
handlers’ execution times, number of executed instructions,
MIPS (million instructions per second), and cache misses. For
PsPIN, L1 misses represent the number of accesses to either
remote L1s or L2. For ault and zynq, performance is measured
with CPU hardware counters [54]. To show the effects of

resource contention, we run experiments with a single worker
thread (i.e., no contention) and with four workers in parallel.

For most of the considered use cases, running times on
PsPIN are not more than 2x the best case (i.e., no contention)
of other architectures. The worst case is filtering, which
computes a hash function on an 8-byte value, resulting in
a compute-intensive task that allows ault to run this han-
dler more than 30x times faster than PsPIN. In general, for
workloads that mainly execute arithmetic instructions (e.g.,
aggregate and filtering) or do not frequently access shared or
packet memory (e.g., strided ddt), ault outperforms zynq and
PsPIN in terms of completion time. For example, on ault, the
compiler optimizes aggregate by using SIMD packed integer
instructions. However, as shown if Figure 11, this difference
does not take into account the larger area occupied by this
architecture. Even though PsPIN has a simpler architecture
than ault and zynq, it still competes in overall execution time
for the other cases due to the comparable rate of executed
instructions per second (MIPS), which is influenced by higher
L1 miss rates on ault and zynq (see histogram, kvstore, and
reduce). In PsPIN, packets are copied directly into the L1 of
the cluster where the handler is executed, enabling single-cycle
access. Also, PsPIN has no hardware caches, hence it does
not suffer from cache-line ping-pong scenarios, as observed
on other architectures for, e.g., histogram and reduce. RISC-V
AMOs [59] enable single-cycle atomic operations that can save
up to 3x instructions over other implementations (e.g., linked
load, store conditional) for the reduce and histogram cases.

V. DISCUSSION AND FUTURE WORK

The PsPIN configuration and analysis that we show in this
work is aimed at sustaining a 400 Gbit/s line rate. How can
PsPIN be scaled out to sustain higher bandwidths? To reason
about scaling we need to consider how to scale memories,
interconnects, and cores and how this affects power and area.
We identify two types of memories: the packet buffer, the
size of which depends on the network bandwidth and the
time packets spend in PsPIN (i.e., the packet latency), and



the handler memory, the size of which depends on the specific
handlers that are offloaded (e.g., to store their state). Note that
the second class does not depend on the network bandwidth.
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lines are min, geometric mean, and max handler running times among the ones
of Figure 12. Points indicate handler critical times (HCT) after which handlers
are bottlenecks for a given packet-size/line-rate/number-of-cores combination.

In Figure 13 we use Little’s law to determine the packet
buffer size over different packet latencies (x-axis) and line
rates (200 Gbit/s, 400 Gbit/s, and 800 Gbit/s). The packet
latency is the time from when a packet arrives in PsPIN to
when it is processed and can be freed up from the packet
buffer. As we show in Section IV-B1, the time needed to
schedule a handler processing a given packet ranges from 26 ns
for 64 B packets to 40 ns for 1024 B ones. For simplicity, we
do not take into account the scheduling latency in the following
discussion but only the handler execution time. Figure 13
further shows the minimum, maximum, and the geometric
mean for all handlers of Section IV-C. We notice how, even
for an 800 Gbit/s network and packet latencies of 3 us, the
required packet buffer capacity is only 300 KiB. Currently,
PsPIN provides a 4 MiB packet buffer that would be enough to
sustain even higher line rate or packet latencies. Moreover, we
need to take into account that handlers should terminate within
a threshold in order to not bottleneck the incoming data flow,
constraining the packet buffer size. We plot the handler critical
times (HCT) that are thresholds after which handlers become
bottlenecks for given combination of packet size, line rate,
and core count. HCTs are computed by scaling the number of
cores together with the line rate. We show HCTs for 256 B,
1024 B, and 4096 B packets. In Section IV-A, we show how
memories take a large portion of both area (87%) and power
(52%). Since the memories provided in this configuration
are partially independent from the network bandwidth (i.e.,
handler memory) and partially over-provisioned (i.e., packet
buffer), we expect area and power to remain stable while
scaling PsPIN to sustain higher line rates.

The modular organization of PsPIN allows to scale up the
number of processing clusters (S8) for, e.g., enabling higher
workloads (i.e., longer handlers) without becoming a bottle-
neck. However, to increase the sustained network bandwidth,
we would either need to re-balance the system in order to feed
the processing clusters at line rate (e.g., to sustain 1 Tbit/s,
we should adopt 1024-bit data paths), or have multiple PsPIN
accelerators with an additional scheduling level.

In the near future, we plan to investigate a possible in-
tegration of Snitch [61] cores and clusters in PsPIN. With
simpler RISC-V cores, a more flexible cluster architecture,

and virtual memory support, we believe this integration can
further improve area and power efficiency, and increase the
flexibility of the proposed in-network compute accelerator.
Additionally, we are following a line of research aimed at
evaluating the costs and benefits of having PsPIN integrated
into network switches, which would enable general packet
processing deeper in the network.

VI. RELATED WORK

One of the oldest concepts related to PsPIN is Active
Messages (AM) [56]. However, in the AM model, messages
are atomic and can be processed only once they are fully
received. In sPIN, the processing happens at the packets level,
leading to lower latencies and buffer requirements.

sPIN is closely related to systems such as P4 [13], which
allow users to define match-action rules on a per-packet basis
and are supported by switch architectures such as AMT [14],
FlexPipe [41], and Cavium’s Xplaint. Those architectures
target switches and work on packet headers, not packet data.
FlexNIC [32] extends this idea by introducing modifiable
memory and enabling fine-grained steering of DMA streams at
the receiver NIC. These extensions can be used for, e.g., par-
tition the key-space of a key-value store and steer requests to
specific cores. However, the offloading of complex application-
specific tasks (e.g., datatype processing [20]) has not been
demonstrated in this programming model. In contrast, PsPIN
allows offloading of arbitrary functions executed on general-
purpose processing cores with small hardware extensions to
increase throughput and reduce latency. PANIC [36] is a
recent work sharing many design principles of PsPIN. The
main difference is that PsPIN allows applications to define
handlers to be executed on incoming packets while PANIC
enables them to express compositions of pre-offloaded tasks.

Programmable NICs are not new. Quadrics QSNet employed
them to accelerate collectives [60] and to implement early
versions of Portals [42]. Myrinet NICs [57] allowed users
to offload modules written in C to the specialized NIC
cores. Modern approaches to NIC offload [51], [21] requires
network engineers to implement functionalities as FPGA mod-
ules, while PsPIN uses easier to (re-)program RISC-V cores.
Differently from these approaches, sPIN enables user-space
applications to define their own C/C++ packet handlers.

VII. CONCLUSIONS
Processing data in the network is a necessary step to scale

applications along with the network speeds. This work defines
principles and architectural characteristics of packet processing
engines, which are the next step after RDMA acceleration.
We propose PsPIN, a power and area efficient RISC-V based
unit implementing the sPIN programming model, defining the
interfaces for NIC integration. We evaluate PsPIN, showing
that it can process packets at up to 400 Gbit/s line rate and
motivate our architectural choices with a performance study of
a set of example handlers over different architectures. PsPIN
is an open-source project and is available at:

https://github.com/spcl/pspin
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