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Abstract—Increasingly complex memory systems and on-
chip interconnects are developed to mitigate the data movement
bottlenecks in manycore processors. One example of such a
complex system is the Xeon Phi KNL CPU with three different
types of memory, fifteen memory configuration options, and
a complex on-chip mesh network connecting up to 72 cores.
Users require a detailed understanding of the performance
characteristics of the different options to utilize the system ef-
ficiently. Unfortunately, peak performance is rarely achievable
and achievable performance is hardly documented. We address
this with capability models of the memory subsystem, derived
by systematic measurements, to guide users to navigate the
complex optimization space. As a case study, we provide an
extensive model of all memory configuration options for Xeon
Phi KNL. We demonstrate how our capability model can be
used to automatically derive new close-to-optimal algorithms
for various communication functions yielding improvements 5x

and 24x over Intel’s tuned OpenMP and MPI implementations,
respectively. Furthermore, we demonstrate how to use the
models to assess how efficiently a bitonic sort application
utilizes the memory resources. Interestingly, our capability
models predict and explain that the high bandwidth MCDRAM
does not improve the bitonic sort performance over DRAM.

Keywords-Cache coherence; memory hierarchy; manycore
architectures; performance modeling.

I. MOTIVATION

Manycore processors, such as Intel’s Xeon Phi KNL

or Oracle’s SPARC, provide growing compute bandwidth

with up to 72 cores on a single chip. To keep up with

the increasing core-count, coherent manycore processors are

configured as multiple NUMA nodes with complex memory

hierarchies, including several levels of private and shared

caches. While cache coherence hides the complexity of the

system from the programmer, it also hides opportunities

for performance improvement, making it difficult to exploit

the full capabilities that these processors provide. Further-

more, emerging memory technologies such as NVRAM, 3D-

stacked, and on-package DRAM complicate the memory

subsystem further.

Users who want to reason about system performance are

often faced with lacking documentation or peak performance

numbers that are hard to achieve in practice. We propose

to utilize systematic microbenchmarking to develop detailed

capability models that capture the complex performance

properties of the memory subsystem. Capability models

express the features of an architecture analytically such

that they can be used together with application requirement

models to reason about performance rigorously [1].

To exemplify the methodology, we develop an extensive

memory capability model for the recently released Intel

Xeon Phi KNL architecture. The chip provides up to 72

cores grouped in tiles, four threads per core, two levels

of cache, six memory DRAM modules using two different

technologies, and an on-die mesh interconnect that keeps the

full system coherent. Moreover, it provides three memory

models and five configuration modes, making a total of

fifteen configurations that may affect memory and the cache

coherence protocol. The documentation itself states only

peak memory bandwidths independent of the configuration.

To demonstrate the effectiveness of our detailed capability

models, we show how to use them to (1) automatically de-

sign (“model-tune”) non-trivial communication algorithms,

and (2) assess how efficiently a sorting application utilizes

the memory subsystem. We derive close-to-optimal com-

munication algorithms for KNL. For example, Figure 1

shows the model-tuned reduction tree that performs 3 times

better than Intel’s OpenMP on KNL (cache mode). It is

unlikely that this tree would have been found with traditional

algorithm design techniques. The model also allows us to

estimate how efficiently the memory subsystem is used in

a “memory-bound” bitonic sort application. The model en-

ables us to determine ranges of threads and input sizes where

this implementation is efficient and where not. Furthermore,

the model explains why the higher-bandwidth but higher-

latency MCDRAM does not improve performance of this

application over DRAM.

Figure 1: Model-tuned reduction tree for 64 cores on KNL

(cache mode).

The main contributions of this paper are:

1) We develop a benchmarking methodology to derive



and parametrize capability models of the memory

system of manycore CPUs.

2) We show how capability models can be used to model-

tune efficient communication algorithms.

3) We exemplify situations in which the cache-coherence

protocol is the main bottleneck and in which it is the

memory bandwidth.

4) We present an extensive performance analysis of the

multiple modes, configurations, and memory hierarchy

of the recently released Intel Xeon Phi KNL.

II. THE INTEL KNIGHTS LANDING ARCHITECTURE

We have used the Intel Xeon Phi KNL to exemplify the

usefulness of our methodology. KNL is the new x86-based

manycore processor released by Intel [2][3][4]. One of the

major changes regarding its predecessor (KNC) is that KNL

is shipped not only as a PCIe accelerator, but also as a stand-

alone processor, providing a peak performance of 6 Tflops of

single precision and 3 Tflops of double precision per KNL.

Moreover, it is binary compatible with Haswell (except

for the TSX instructions), supporting Windows Server and

Linux.
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Figure 2: Knights Landing Architecture

A. Cores and tiles

The new Intel Xeon Phi KNL provides up to 72 x86

fully-compliant cores (called Knight cores) with up to four

threads (HyperThreads) per core. The Knight core is an

out-of-order version of the Silvermont used in the Atom

C2000 series, with a twice deeper pipeline, and running

at 1.3 GHz. Each core has a private 32 KB L1 data

and 32 KB L1 instruction cache. The data cache has 8-

way associativity, two 64 B load ports and one store port.

Moreover, each core is equipped with two vector processor

units that support AVX-512F (AVX3.1) with Intel AVX-

512 Conflict Detection Instructions (CDI), Intel AVX-512

Exponential and Reciprocal Instructions (ERI), Intel AVX-

512 Prefetch Instructions (PFI), and hardware scatter/gather

support.

Cores are arranged in tiles (Figure 2a). Each tile holds

two cores and a shared 1 MB L2 cache (private to the tile)

with 16-way associativity that provides 1 line read and half-

line write per cycle. Together with the cores and the cache,

there is a Cache/Home Agent (CHA) that acts as distributed

tag directory to keep coherence of the L2 caches across tiles

using a MESIF protocol. It is also the connection point of the

tile. There are 38 tiles but at least two of them are disabled

in all models currently shipping.

B. Tiles and mesh

Tiles are connected into a 2D mesh that provides cache

coherence between the L2 caches. Besides the tiles, the

mesh incorporates the memory controllers and the I/O con-

nections. The mesh is called a “mesh of rings” in which

each row and column is a half ring. At the end of the

die, the rings loop around, but not as a torus structure

(when a message goes off the ring, it gets injected back in

the opposite direction). Each ring stop (e.g., one tile) sees

both directions of two discrete rings, one in dimension X

and one in dimension Y, with a total of four connections

(each ring passes through each stop twice but in opposite

directions). Each packet injected to the ring moves first in

the Y dimension and then across the X dimension. A stop

holds the packet until there is a gap on a ring.

C. Memory

KNL presents an heterogeneous memory hierarchy with

‘near’ (MCDRAM) and ’far’ (DDR4) memory. The ’far

memory’ consists of 2400 Mhz DDR4 slots, accessible

through two memory controllers, each one with three DDR4

channels, i.e., 6 memory channels total with up to 64 GB per

channel (384 GB total) and a peak bandwidth of 90 GB/s.

The ‘near’ memory consists of 16 GB (8 chunks of 2 GB

each) of integrated Micron Multi Channel DRAM (MC-

DRAM) based on the Hybrid Memory Cube technologies

by Micron with 2.5D stacking and providing 5x bandwidth

over DDR (400 - 500 GB/s).

The near memory can be configured in three different

modes:

Flat: both memories form a single address space and

DDR and MCDRAM appear as separate NUMA nodes.

Cache: the near memory is configured as “fast cache”

for the far memory. It is a direct mapped memory based on

physical addresses with 64 B lines. Data read from DDR

is sent to MCDRAM and the requesting tile simultane-

ously. It is a “memory-side” cache and acts like a high-

bandwidth buffer on the memory side (e.g., memory declared

as uncacheable may be allocated in the MCDRAM cache).

MCDRAM as cache is inclusive of all modified lines in L2

(write-backs are made directly to MCDRAM). Before a line



is evicted from MCDRAM, there is a snoop to check if a

modified copy exists in L2. If so, it downgrades it to shared

by forcing a write-back and it is not evicted from cache.

Hybrid: the near memory is part cache (4 or 8 GB)

and part flat (12 or 8 GB).

D. Cluster modes

Following the Xeon trend to expose the NUMA domains

within Xeon sockets [5], KNL provides five levels of NUMA

exposure varying how the cache lines are assigned to the tag

directories that manage the cache coherence protocol1:

A2A (All-to-all): the cache line addresses are uniformly

hashed across all the distributed tag directories. This mode

is similar to the KNC Xeon Phi cache coherence [6].

Quadrant: the chip is divided into four quadrants, and

each cache line is assigned to a directory residing in the

same quadrant as the memory from where the cache line

is fetched. It takes advantage of certain locality within the

mesh while maintaining software transparency.

Hemisphere: the same as quadrant but with two hemi-

spheres.

SNC4 (Sub-NUMA Clustering 4): it is equivalent to

the quadrant mode but without transparency. Each quadrant

(cluster) is exposed as a separate NUMA domain to the

OS, analogous to a 4-socket Intel Xeon. It is similar to

the Cluster-On-Die mode present in modern Intel Xeon

processors.

SNC2: like SNC4 but exposing two NUMA domains.

Figure 3 shows an example of how the different assign-

ment of lines to the tag directories may impact on an L2

miss in the all-to-all, quadrant, and SNC4 modes.

In all-to-all, quadrant, and hemisphere modes, memory

addresses are uniformly distributed across the memory chan-

nels, although the distribution pattern is internally different

due to the different affinity configurations. In flat mode,

contiguous ranges are assigned to DDR and MCDRAM

respectively, with the MCDRAM range above the DDR

range.

In SNC modes, contiguous ranges of memory are assigned

to each cluster or NUMA node. In flat mode, the memory

region mapped to each cluster is divided in two contiguous

portions that are interleaved over the MCDRAM and DDR of

the cluster. Note that there are only two memory controllers

for DDR and, when using SNC4, the DDR memory address

range assigned to a quadrant is interleaved among the three

DDR channels of the closest DDR memory controller.

E. I/O and self-hosting

The KNL can be used as a self boot socket or as a

PCIe card. The socket version may be equipped with either

(1) 36-lanes Gen3 PCIe (root port), or (2) two Omni-Path

Fabric Ports (100 Gb/s/dir) and 4-lanes Gen3 PCIe (root

1All cluster modes maintain the full system coherent.
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Figure 3: Effect of the cluster modes on an L2 read miss.

Steps are: (1) L2 miss, (2) request to the distributed directory

and directory miss, (3) forward to memory, (4) reply from

memory.

port). Instead of Omni-Path, the unit can be equipped with

InfiniBand. There is no support for dual-socket KNLs and

there is no cache coherence support through the Omni-Path

Fabric.

III. MEMORY CAPABILITIES BENCHMARKING

In order to expose the real performance capabilities of the

architecture at different levels and configurations, we need to

design a benchmark suite to obtain the relevant information

about the system. We then can use this information to derive

performance models. We focus on cache coherence and

memory accesses using a custom benchmark suite and a

tool to measure cache-to-cache transfers.

A. Tools and configuration

We used BenchIT [7][8] and the Xeon Phi Benchmarks [9]

to measure the cost of cache-to-cache transfers considering

cache states and cache line location in coherent processors.



The latter uses ping-pong and one-directional communica-

tions (one thread allocates the data and other(s) thread(s)

accesses, with no polling). We added ad-hoc benchmarks for

synchronization (polling on flags that are cached and not ran-

domized) and memory bandwidth based on STREAM [10]

that measure the access bandwidth to random buffers se-

lected from a larger one. The XeonPhi Benchmarks measure

the cost of each iteration within each thread. We use the

maximum value measured per iteration. The data used in

each iteration is randomly selected from a larger buffer.

Threads are synchronized with window intervals based on

the use of the TSC counter [11]. Before initializing the

windows, the TSC skew among cores is calculated. We

compile our benchmarks with Intel ICC 16.0.2 and Intel

MPI 5.1.3.181. We use an Intel Xeon Phi KNL 7210 with

64 cores at 1.30 GHz, 16 GB MCDRAM and 96 GB DDR4

(2133 MT/s).

B. Overview of the results

Tables I and II show a summary of the numbers that char-

acterize the architecture in the different modes. We report

medians in all experiments, and, for bandwidth, we report

the maximum median achieved across a set of experiments

(varying the message size, and the number and schedule

of threads). For Copy and Triad, we also report the results

obtained with the STREAM benchmark [10].

We discuss these results in detail in the following sections

but, in general, we observe that the performance difference

between modes appears mainly in terms of achievable mem-

ory bandwidth. Moreover, the performance differences when

accessing to different quadrants/hemispheres is only visible

with some specific latency benchmarks (pointer-chasing) and

some configurations of the bandwidth benchmarks. However,

in order to reason about performance and modeling, we can

use the same performance model and adjust the parameters

when necessary.

In comparison with the previous generation of Xeon Phi

(KNC), KNL shows much better performance in terms of

latency and bandwidth. The main improvement is the single

thread performance: KNL does not rely anymore on having

more than one thread per core to hide memory access

latency. And, although the vector instructions do improve

KNL performance, it is not so dependent on them (or on

memory alignment) as KNC was.

We also found some limitations that impact our results.

• Due to the yield, some of the tiles are disabled. Hence,

it is not possible to know what is the location of a

given tile within the mesh (we only know which tile

is in which quadrant or hemisphere when using SNC

modes).

• Some configuration modes are still experimental, es-

pecially the SNC2 mode, which may improve in the

future.

• We measure a resolution of 10 nanoseconds in the

instruction that reads the TSC counter.

IV. CACHE-TO-CACHE TRANSFERS

In order to characterize cache-to-cache transfers, we use

and extend a methodology [12] that bases on using cache-

to-cache benchmarking to construct a simple performance

model and optimize communication algorithms. We show

how to apply this methodology to Intel Xeon Phi KNL after

making an in depth performance analysis, and we use our

results to model-tune three communication algorithms.

A. Benchmarking and modeling

We characterize the cost of transferring data across the

mesh using a set of benchmarks that measure features that

we have identified to be key to model communications in

cache-coherent systems: cache-to-cache latency, bandwidth,

contention (latency when multiple threads are accessing the

same data), and congestion (latency when multiple cache-

to-cache transfers are happening simultaneously through the

mesh). Each feature is a piece of a model that we can use

to optimize shared memory algorithms.
1) One cache line transfers: We use BenchIT [8] to

measure the cost of cache line transfers between two threads,

varying thread location and cache-state. BenchIT provides

one number that represents the median2 of the 5000 av-

erages of 1024 passes of 32 pointer-chasing accesses. The

latency results (c.f. Tables I and II) do not show significant

differences among the different configuration modes.

We distinguish between accesses to local cache (L1), the

cache of the same tile (L2), and the cache of a remote tile

(also L2). Although in the accesses to remote tiles the states

M (modified) and E (exclusive) perform similarly, within

a tile we observe the extra cost of the write-back in the

M state. For remote accesses, we observe small differences

(5-15%) between the S (shared) and F (forward) state.

Moreover, there are between 5-10% differences between the

quadrants in the cluster modes (SNC2 and SNC4).

Figure 4: Latency of cache line transfers between core 0 and

every other core in SNC4-flat mode for M, E and I states.

Figure 4 shows the latency distribution across cores for

states M, E and I in SNC4-flat.

2We modified BenchIT to provide the median instead of the minimum.



Table I: Cache-to-cache benchmark results (Section IV). We report medians that are within the 10% of the 95% confidence

intervals.

Software NUMA Software UMA

SNC4 SNC2 QUAD HEM A2A

Latency [ns] Local (L1) 3.8 3.8 3.8 3.8 3.8
(Copy/BenchIT) Tile (L2) 34 (M) 34 (M) 34 (M) 34 (M) 34 (M)

17 (E) 18 (E) 18 (E) 18 (E) 18 (E)
14 (S,F) 14 (S,F) 14 (S,F) 14 (S,F) 14 (S,F)

Remote 107-122 (M) 111-125 (M) 119 (M) 120 (M) 122 (M)
98-114 (E) 104-117 (E) 116 (E) 116 (E) 116 (E)

96-118 (S,F) 104-118 (S,F) 107-117 (S,F) 107-117 (S,F) 109-117 (S,F)

Bandwidth [GB/s] (Read) 2.5 2.5 2.5 2.5 2.5

Bandwidth [GB/s] (Copy) Tile 6.7 (M) 6.7 (M) 7.5 (M) 7.4 (M) 7.5 (M)
7.6 (E) 6.7 (E) 9.2 (E) 9.2 (E) 9.2 (E)

Remote 7.7 6.7 7.5 7.5 7.5

Congestion (P2P pairs) None

Contention [ns] (1:N copy) α 200 200 200 200 200
Linear, TC(N) = α+ β ·N β 34 34 34 34 34

Table II: Memory benchmark results (Section V). We report medians and, for bandwidth, we also report the peak as obtained

with STREAM. The medians reported are within the 10% of the 95% confidence intervals.

Software NUMA Software UMA

SNC4 SNC2 QUAD HEM A2A

Flat Mode Latency [ns] (BenchIT) DRAM 130-140 134-146 140 140 139
MCDRAM 160-175 160-170 167 167 168

Bandwidth [GB/s] (Copy NT / STREAM Copy) DRAM 69 / 77 69 / 77 70 / 77 71 / 77 71 / 77
MCDRAM 342 / 418 333 / 388 333 / 415 315 / 372 306 / 359

Bandwidth [GB/s] (Read) DRAM 71 71 77 77 77
MCDRAM 243 288 314 314 314

Bandwidth [GB/s] (Write) DRAM 33 34 36 36 36
MCDRAM 147 163 171 165 161

Bandwidth [GB/s] (Triad NT / STREAM Triad) DRAM 71 / 82 71 / 82 74 / 82 73 / 82 73 / 82
MCDRAM 371 / 448 347 / 441 340 / 441 332 / 434 325 / 427

Cache Mode Latency [ns] (BenchIT) 158-178 161-171 166 168 172

Bandwidth [GB/s] (Copy NT / STREAM Copy) 150 / 252 130 / 252 175 / 255 134 / 237 132 / 233

Bandwidth [GB/s] (Read) 87 95 124 128 118

Bandwidth [GB/s] (Write) 56 56 72 72 68

Bandwidth [GB/s] (Triad NT / STREAM Triad) 296 / 292 246 / 294 296 / 309 273 / 274 264 / 269

2) Contention: We run a custom benchmark in which

one thread running in core 0 owns a one-line buffer, and

other N threads access this line simultaneously and copy it

into a local buffer. Results show high contention (similarly

to KNC) that can be estimated with a α + β · N model

using linear regression. We populate the model with the

results obtained with the different modes and cache line

states, as well as different thread schedules: each new

thread runs in a different tile vs. each new thread runs in

a different core that can be in the same tile. In Table I

we show the parameters for the latter schedule. We did

not observe significant differences between the cluster and

memory modes (although SNC2 is in experimental state and

variance is higher than in the other cluster modes).

3) Congestion: We run a benchmark in which pairs of

threads located in different pairs of cores communicate

simultaneously using a ping-pong pattern. We experimented

with multiple thread schedules and did not observe any

increase in latency. Note that we do not know the exact

location of the tiles in the mesh and we cannot produce

layouts that stress specific rows or columns in the mesh.

4) Multi-line: We measure the latency and bandwidth

when one thread copies a multi-line message that lies in a

remote cache, into a local buffer. As well as the latency and

bandwidth of reading a remote message into local registers.

Table I reports the maximum median observed with sizes

ranging from 64 B (1 cache line) to 256 KB buffers. We

use vector instructions because performance is higher when



compared with non-vectorized accesses (read bandwidth

goes from 1 GB/s to 2.5 GB/s, and copy from 6 GB/s

to 9 GB/s, except for SNC2, where it is still 6.7 GB/s).

Note that this is single-thread and not aggregate bandwidth,

which could be obtained directly since we did not observe

congestion in the mesh.
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Figure 5: Bandwidth of cache-to-cache copies in SNC4-

cache mode.

Figure 5 shows, for SNC4-cache mode, the bandwidth

when copying data (in M and E states) into a local buffer

in E state. The remote buffer is in another core in the local

tile, and in two remote tiles: one in the same quadrant,

and another in a remote quadrant. In this copy benchmark,

we observe again the extra cost of writing-back when the

remote buffer lies in the same tile. Although, in general,

local accesses have higher bandwidth than the remote ones

when data fits in L1. The only difference between cluster

modes appears in the copy benchmark in the SNC modes:

the bandwidth of local accesses is lower than in other modes,

and there are small differences between the two remote

clusters. Also note that this difference only appears when we

use vector instructions, and SNC2 mode is still experimental.

In order to obtain a latency model for N cache lines, we

fit a linear regression model (α+ βN ).

B. Optimization of communication algorithms

The benchmarks described in the previous sections can

be utilized to build a capability model for coherent caches

of manycore CPUs. We now use the measured parameters

to model-tune three communication algorithms: broadcast,

reduce, and dissemination barrier.

Because we cannot predict which thread wins and how

often a cache line is moved when at least one thread

polls the same variable, we model the best and worst case

performance for each algorithm using a so-called min-max

model [12]. However, we optimize for the best case because

the worst rarely happens in practice. We use one thread per

core and distinguish between inter- and intra-tile communi-

cations. Hence, we apply some optimizations intended for

multi-socket or hierarchical machines. On the inter-tile level,

the high contention and the mostly homogeneous mesh make

the optimization adapt to tradeoffs between parallelism and

contention.

1) Considerations for broadcast and reduce: These op-

erations originate or finish in one thread. Using this thread

as root, we configure the tiles in a generic tree in which

node i has an arbitrary number of children (ki) [12]. The

cost of the inter-tile broadcast tree for n tiles is represented

in Equation (1). We express the cost recursively in terms of

transmitting the message to the immediate descendants Tlev ,

plus the cost of the most expensive subtree. RI is the cost of

reading one line from memory, RR from a remote cache, and

RL from local cache. To transfer the data to the descendants,

the parent (node 0) copies the data to a shared structure

and sets a flag (in the same cache line, RI + RL), that the

children read before copying the data (causing contention,

TC(i)). Finally, the children write a flag (sequentially) that

the parent reads to know that the message has been copied

(RI + k0RR).

minimize
ki

Tbc(tree) = Tlev(k0) + max
i=1,...,k0

(Tbc(subtreei))

Tlev(k0) = RI +RL + TC(k0) +RI + k0RR

subject to Tbc(leaf ) = 0
∑n

i=0
ki = n− 1, ki ≥ 0 (1)

The model for reduce includes some extra buffering to hold

the data collected from the descendants and the cost of

“reducing” these values. When there is more than one thread

per tile, we make a flat tree within the tile. This follows

the principle of isolation of expensive (inter-tile) and cheap

(intra-tile) polling, so that we limit the performance variation

that occurs when one poller fetches a line holding a flag,

and the writer has to invalidate it before updating it. The

optimization procedure leads to non-trivial trees as shown

in Figure 1

2) Considerations for barrier: We use a generic dissem-

ination barrier, based on multiple rounds (r) in which every

thread communicates with a given number of threads (m).

We use the performance values to configure the number

of rounds as shown in Equation (2), where RI is the cost

of reading one line from memory, RR the cost of reading

it from a remote cache, and n is the number of threads

involved.

minimize
r,m

Tdiss,min(r,m) = r(RI +mRR)

subject to r = ⌈logm+1(n)⌉ (m+ 1)r ≥ n
(2)

We use a global dissemination so, in each round there

is at least one thread communicating with a remote tile,

hence we consider RR as the cost or communicating with

a remote tile. According to our model, the reduction in

interferences when combining inter-tile dissemination with

intra-tile barriers does not compensate for the addition of

two extra stages (we need an intra-tile gather, followed by

the inter-tile dissemination, and then an intra-tile broadcast).

3) Performance results: We compare our algorithms with

Intel MPI and Intel OpenMP. We run 1000 iterations per

benchmark and we pin threads to cores with two different

schedules: scatter (first one thread per tile, and then per



core) and filling tiles (one thread per core). Figures 6, 7,

and 8 show the results for SNC4-flat in MCDRAM (the

differences between configuration modes are usually below

10%). The results are represented with boxplots and the

min-max model is represented by the black shadow. The

reduce and broadcast models overestimate the cost when

the number of threads is 32 or 64. But it is able to

capture the performance trends and variability. Our model-

tuned algorithms provide speedups of up to 7x (barrier) and

5x (reduce) over OpenMP, and up to 24x (barrier), 13x

(broadcast) and 14x (reduce) over Intel’s MPI for KNL.

We note that most MPI implementations utilize different

address spaces and are thus at a disadvantage. Yet, this is

not fundamental because, on manycore, one could simply

map all process address spaces into the virtual memory of

each process [13].

(a) Filling Tiles. (b) Scatter.

Figure 6: Barrier performance in SNC4-flat (MCDRAM).

(a) Filling Tiles. (b) Scatter.

Figure 7: Broadcast performance in SNC4-flat (MCDRAM).

V. MEMORY BANDWIDTH

The first part of the capability model describes the cache-

coherence subsystem. Now, we proceed to design models

for hybrid memory architectures that combine DRAM with

(a) Filling Tiles. (b) Scatter.

Figure 8: Reduce performance in SNC4-flat (MCDRAM).

either high bandwidth memory (like MCDRAM) or non-

volatile memory (NVRAM). In this scenario, we aim to

apply a similar methodology than for cache, selecting a

set of representative benchmarks in order to quantify and

characterize memory performance. Then we use this charac-

terization to estimate the performance of a sorting algorithm.

A. Benchmarking

When tackling memory performance, we need to consider

large amounts of data that will not fit in cache, hence,

we do not need such fine-grained modeling as we did for

cache-to-cache communications. We analyze the achievable

performance with four types of sequential accesses varying

the number of reads and writes performed per iteration: copy

(a[i] = b[i]), read (a = b[i]), write (b[i] = a), and triad

(a[i] = b[i] + s · c[i]). We use vector instructions with non-

temporal hints when possible (i.e., when we can avoid cache

and write directly to memory) because we need them to

come closer to the bandwidth peak. We run the benchmark

for 1000 iterations, using random buffers selected from

a larger one. Note that we are not using NUMA-aware

allocation in the SNC modes (only selecting MCDRAM or

DRAM in the flat modes).

Table II shows the maximum median observed per mode

and benchmark in a set of experiments (varying number of

threads and schedule). We report the medians because they

are the expected performance and we use them to populate

our model. For copy and triad, we also report the peak

obtained with STREAM. Figure 9 shows the results of our

triad benchmark for SNC4-flat.

In these benchmarks we do observe differences between

the flat and the cache mode. In every iteration of the

benchmark, we select a buffer randomly. In the cache mode,

when accessing random buffers, we cannot ensure if it is

cached in MCDRAM or not, hence, we obtain much more

variability in the results. Besides, the peak performance is

lower since the memory has to check first if the requested

data is in DRAM or MCDRAM. When using DRAM, copy,



read, and triad are around 70-80 GB/s. We found that is it

necessary to use both reads and writes simultaneously (e.g.,

the triad pattern), as well as non-temporal hints (used in

triad and copy) to come close to the peak bandwidth of

MCDRAM.

We also analyzed two schedules: filling cores with up

to four threads (compact) and using 1/2/4 threads per core

(scatter). For MCDRAM and compact schedules, we usually

need 256 threads to obtain the best results, whereas with

scatter we can reach the highest median once we are using

all cores (64 or 128 threads). For DRAM, we only need 16

cores to saturate the bandwidth.
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Figure 9: Memory bandwidth achieved with our triad bench-

mark in SNC4-flat mode.

B. Application: Sorting

To exemplify the use of the memory data to model an

application, we implement a parallel integer merge sort.

We parallelize the sorting and implement the merge with a

bitonic network of width 16 (for integers) to take advantage

of vector instructions [14] (hence, we always fetch full

lines). We use ping-pong buffers to limit the amount of

necessary memory.

1) Memory access model: In each merge operation we

read two lists of n
2

lines and produce a list of n lines.

When starting the algorithm, we read two lines, we apply

the bitonic network, and we write one line. Then, we do

n−1 repetitions in which we read 1 line, apply the network

(or not, if we only have elements left in one list), and write

one line. Hence, we have a total of n writes and n reads

per merge. When all elements fit in L1 cache, we only fetch

data from memory in the first stage, in the rest of them data

is in L1. The cost is shown in Equation (3).

CL1(n) = [log2(n)− 1]2n · costL1 + 2n · costmem (3)

We can apply a similar reasoning to obtain the model in

Equation (4) when data fits in L2, where nL1 is the size of

the largest output list that fits in L1. We can process the first

elements (nL1) in L1 and then we will be accessing L2.

CL2(n) =
n

nL1

CL1(nL1)+

+ [log2(n)− log2(nL1)]2n · costL2

(4)

Finally, we can derive Equation 5 to cover larger sizes that

do not fit in L2, where nL2 is the size of the largest output

list that fits in L2. The available amount of L1 or L2 depends

on how many threads are running in the same core or tile.

Cmem(n) =
n

nL2

CL2(nL2)+

+ [log2(n)− log2(nL2)]2n · costmem

(5)

We added the cost of synchronization among threads be-

tween each merge using the cache model: one thread writes

a flag once it finishes its merge and, the thread that uses this

merged data as an input in the next stage, reads this flag

(RL+RR). Moreover, we added the cost of the bitonic sort

taking into account the cost of the AVX-512 instructions and

the number of vector instructions per bitonic network [2].

When reading data from cache (costL1 and costL2) we

use the latencies from Table I. However, when accessing

memory (costmem), we can use the latency or the inverse

of the bandwidth depending on the layout of the data. When

the input lists are ordered, we read one full input list first

and the other afterwards. But if the data is random, we

interleave reads from each list. Since we cannot predict the

layout of the input data, and given that thread interaction is

very limited, instead of a min-max model based on thread

interaction, we use the latency for the costmem of the worst

case, and the inverse of the bandwidth for the costmem of

the best case. When considering bandwidth, we take into

account not only the size of the message that is being

accessed, but also the number of threads that are accessing

data, as well as their location. Since, as shown in Table II

and Figure 9, they both affect the achievable bandwidth.

However, besides the difference in achievable bandwidth

between MCDRAM and DRAM, and although our latency

model predicts a higher cost for MCDRAM (given its higher

access latency), our bandwidth memory model does not

predict any performance benefit for this algorithm when

using MCDRAM. This is because the memory access pattern

of this merge sort does not involve all cores accessing

memory except for the first stages, in which the size of the

merged arrays is small (when sorting 1 GB with 256 threads,

all threads are sorting for output sizes of up to 4 MB). Then,

the number of threads is halved until only one thread is



working (and the achievable bandwidth for a single-thread is

around 8 GB/s in both memories). This highlights the need

for performance models in order to quantify the benefits

that a given algorithm implementation can obtain from the

different memory modules.

2) Full model: Our memory model works well when the

memory access cost dominates (the size of the sorted vector

is larger than 16 MB). However, for smaller messages, the

overhead introduced due to thread management, recursion,

and false sharing is higher. In order to assess the efficiency of

our implementation and analyze when the cost is dominated

by memory access bandwidth, we developed an overhead

model by applying linear regression to the cost of sorting

1 KB messages with multiple number of threads, after

subtracting the cost predicted by the memory model. Then,

we use this overhead for all the message sizes, combined

with the memory model.

3) Results: Figure 10 presents the results (for SNC4-flat

and MCDRAM) of running our parallel merge sort with a

random input, as well as the memory models (using latency

and using the inverse of the bandwidth), and the full model

that combines one of the memory models and the overhead

model. We mark with a vertical black line when the overhead

is over 10% of the memory model, meaning that we are no

longer bounded by the memory bandwidth achievable by this

algorithm, but, instead, we are introducing extra overhead

and not using our resources efficiently.

When the data size is small (1 KB), the two memory

models are very similar and the cost is dominated by the

overhead when using more than two threads. For interme-

diate sizes (e.g., 4 MB), for less than eight threads the cost

is dominated by memory accesses. After that, the efficiency

of our algorithm decreases, as the overhead is larger. For

large sizes, the cost is bounded by memory accesses, and

our implementation makes an efficient use of the resources.

As predicted by the model, the difference between MC-

DRAM and DRAM is negligible, despite the higher band-

width of MCDRAM, due to synchronization and latency

overheads.

VI. RELATED WORK

The detailed study of the hardware characteristics of com-

plex manycore architectures is key to understand their advan-

tages, in CPU systems [15], and accelerators [6] [16] [17].

Nevertheless, we need to translate the hardware capabili-

ties into usable models and guidelines that the programmers

can use. Petrovic et al. [18] discuss how to implement a

broadcast basing on the architecture of Intel SCC, with no

coherence. In previous work, we tackled the development

of an analytical performance model for cache-coherent sys-

tems [12]. In this work, we extend it and apply it to a mesh-

based manycore as well as extend the analysis to hybrid

memories and multiple configuration modes.

The most common model used to analyze the memory

bandwidth needs of an application in a given system is the

roofline model. Doerfler et al. [19] apply this model to the

Xeon Phi KNL, and it has been used to compare different

architectures [20]. However, it does not provide a framework

to optimize algorithms. We make an in depth analysis of the

memory capabilities and show how we can use it to predict

the performance and the efficiency of a merge sort algorithm.

VII. DISCUSSION AND CONCLUSIONS

Heterogeneous memory systems make it difficult to reason

about their performance. Moreover, documentation usually

only reports peak performance which does not provide a

realistic model for the capabilities of a system. Achieving

this performance in real applications might be very difficult

(or even impossible). Furthermore, there are multiple vari-

ables whose impact is not clear unless it is measured, like

use of vectorization, number and type of memory accesses

(reads and writes), thread scheduling, memory pinning, or

NUMA-aware allocation. For example, in KNL, we show

that, even though we can touch peak memory bandwidth by

carefully tuning a memory benchmark, on average and with

randomized addresses, the median of the results is far from

peak. Moreover, depending on the application characteris-

tics, we may need to measure different capabilities, often

with different granularities (e.g., cache vs. memory).

With the Intel Xeon Phi KNL as a case-study, we use

benchmarking to show how the cache-coherence protocol

is designed for homogeneity, trading programmability for

performance. Even the differences between the multiple

mesh configuration modes are not that relevant, especially

on a fine-grained level. And, although we cannot investigate

these differences further because tile location in the mesh is

unknown, the impact of this location does not seem to be

relevant in the modeling of communication algorithms.

Regarding the memory modes, although the cache mode

eases memory allocation, the access latency is higher, and

the amount of data that does not fit in the MCDRAM cache

(or is not reused) limits the achievable memory bandwidth.

However, when using a flat mode, we need performance

models in order to decide which data has to be allocated

in which memory. And, in both cases (flat and cache), we

show how a performance model can guide us in assessing

how efficient is our application in terms of resource usage.

To sum up, we derived systematic benchmarking method-

ologies to select relevant parameters for capability models

of memory subsystems. These models enable a flurry of

applications to reason rigorously performance. We showed

two use-cases to design algorithms and to assess how

effective memory bandwidth is usable by a sorting applica-

tion. We believe that a structured model-driven approach to

performance engineering of memory bound applications can

lead to further interesting insights into the relation between

applications and complex memory systems.
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Figure 10: Performance of the sorting algorithm when using a compact schedule (filling cores) in SNC4-flat mode

(MCDRAM).
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