
1

Stream Semantic Registers: A Lightweight
RISC-V ISA Extension Achieving Full Compute

Utilization in Single-Issue Cores
Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini

Abstract—Single-issue processor cores are very energy efficient but suffer from the von Neumann bottleneck, in that they must
explicitly fetch and issue the loads/storse necessary to feed their ALU/FPU. Each instruction spent on moving data is a cycle not spent
on computation, limiting ALU/FPU utilization to 33% on reductions. We propose "Stream Semantic Registers" to boost utilization and
increase energy efficiency. SSR is a lightweight, non-invasive RISC-V ISA extension which implicitly encodes memory accesses as
register reads/writes, eliminating a large number of loads/stores. We implement the proposed extension in the RTL of an existing
multi-core cluster and synthesize the design for a modern 22nm technology. Our extension provides a significant, 2x to 5x, architectural
speedup across different kernels at a small 11% increase in core area. Sequential code runs 3x faster on a single core, and 3x fewer
cores are needed in a cluster to achieve the same performance. The utilization increase to almost 100% in leads to a 2x energy
efficiency improvement in a multi-core cluster. The extension reduces instruction fetches by up to 3.5x and instruction cache power
consumption by up to 5.6x. Compilers can automatically map loop nests to SSRs, making the changes transparent to the programmer.

Index Terms—Parallel architectures, micro-architecture implementation considerations, energy-aware systems

F

1 INTRODUCTION

THE BREAKDOWN of Dennard scaling in modern sil-
icon manufacturing has prompted a paradigm shift

in the way we approach computer architecture design.
Cutting-edge processing systems such as today’s CPUs and
GPUs are hitting the utilization wall [1]. Research effort
is moving away from manufacturing technologies towards
technology-aware computer architectures with a focus on
energy efficiency. Performance at low power is a key in-
gredient in achieving high utilization of available hardware
in order to mitigate the effect of limited frequency and
overcome dark silicon [2].

In-order processor cores built around the load/store
paradigm face an efficiency challenge in keeping their func-
tional units busy. As an illustrative example, assume that we
would like to compute the dot product over a long vector of
Floating Point (FP) values. Consider the following snippet
of RISC-V [3] assembly executed for every pair of values:

flw ft0, 4(a0!)
flw ft1, 4(a1!)
fmadd.s ft2, ft0, ft1, ft2

The processor loads two values from memory (flw), then
multiplies them and accumulates the result (fmadd.s). We
assume that iteration and pointer adjustment are performed
via hardware loops and post-load increment, respectively,
which are quite affordable microarchitectural enhancements

• F. Schuiki, F. Zaruba, and L. Benini are with the Integrated Systems Lab-
oratory (IIS), Swiss Federal Institute of Technology, Zurich, Switzerland.
E-mail: {fschuiki,zarubaf,lbenini}@iis.ee.ethz.ch

• T. Hoefler is with the Scalable Parallel Computing Laboratory (SPCL),
Swiss Federal Institute of Technology, Zurich, Switzerland. E-mail:
htor@inf.ethz.ch

• L. Benini is also with the Department of Electrical, Electronic, and
Information Engineering (DEI), University of Bologna, Bologna, Italy.

[4]. In a single-issue core this takes at least three cycles to
execute. Since only every third instruction performs actual
computation, the Floating Point Unit (FPU) is utilized at
most 33 % of the time. The fundamental problem is that in a
load-store architecture, data transfers from and to memory
have to be encoded explicitly as instructions. If the machine
is only able to issue a single instruction per cycle, every load
and store introduces at least one idle cycle in the FPU. The
lower a kernel’s operational intensity, the more pronounced
this problem becomes.

One would like to keep a processor’s functional units as
busy as possible for various reasons. Consider the following
two scenarios:

1) In the near-threshold regime or at the operating temper-
atures found in High Performance Computing (HPC)
or the data center, leakage currents are a significant
contributor to power consumption. We observe for ex-
ample a 6.5× leakage increase from 5% at 25 ◦C to 25%
at 85 ◦C in the 22 nm technology used throughout this
paper. An idle unit still dissipates leakage power, unless
it is power-gated at fine granularity, which is hard to do.
This leakage power adds to the energy consumed per
computation, decreasing overall energy-efficiency.

2) In an area-constrained setting such as an embedded
application, idle cycles can be costly performance-wise.
A core that keeps its FPU busy 50 % of the time achieves
half of the performance within a given area budget,
and conversely requires twice the area for a given
performance target, than a core which keeps its FPU
busy 100 % of the time.

Achieving high FPU/ALU utilization is the ultimate goal
of a micro-architecture design. Hence, solutions to this prob-
lem exist. For example a core that can issue multiple instruc-

ar
X

iv
:1

91
1.

08
35

6v
3

 [
cs

.A
R

]
 1

 A
pr

 2
02

0

2

tions per cycle does not have this fundamental limitation, as
it can keep the Load-Store Unit (LSU) and the FPU busy at
the same time. In our previous example, such a core would
need to be able to issue two loads and one FP operation,
hence fetching and decoding three instructions, per cycle.
Accommodating such an increase in fetch bandwidth does
not come for free [5]. In fact, moving to superscalar out-of-
order execution requires the instruction fetch interface to at
least triple in width, followed by three replicated instruction
decoders. In addition, the parallel execution of LSU and
FPU in non-VLIW cores requires at least some form of
dependency tracking and reordering, and is likely to entail
register renaming as well.

As a result, achieving high execution unit utilization
with out-of-order superscalar execution is not energy effi-
cient [6]. This is true even for moderately complex multiple-
issue cores. Complex Instruction Set Computer (CISC) ma-
chines can allow for memory accesses to be encoded in a
compute instruction directly, thus potentially reducing the
bandwidth required to issue three instructions in parallel.
Decoding CISC instructions is highly non-trivial however
and compiler and micro-architecture become more complex.
As a result, even CISC Instruction Set Architectures (ISAs)
such as x86 internally unpack these complex instructions
into multiple RISC-like micro-operations. Other approaches
such as vector processors and Very Long Instruction Word
(VLIW) require moving to a much more complex data-
parallel micro-architecture and/or incur additional instruc-
tion bandwidth, with a major impact on the ISA or the
compiler.

In this paper we propose Stream Semantic Registers
(SSRs), a simple and lightweight extension to single-issue
load-store architectures to remove its utilization bound
without major impacts on the complexity of the micro-
architecture and its silicon implementation. The key idea
is to allow loads and stores to be encoded in any instruction
for instruction sequences with regular data accesses, instead
of explicit load/store instructions. We do this by giving a
few registers stream semantics: reading from or writing to
the register issues a read or write into the memory system,
respectively. An Address Generation Unit (AGU) placed
outside the processor core allows these memory accesses
to follow a programmable affine address pattern which is
very common for many compute-intensive workloads such
as Digital Signal Processing (DSP), stencils, and machine
learning. A key advantage of following such a predictable
address pattern is the fact that data can be loaded pro-
actively, implementing a form of prefetching. This allows
our introductory example to be rewritten as

fmadd.s ft2, ft0, ft1, ft2

where ft0 and ft1 now have stream semantics. Intuitively
the expected speedup is 3×. We will show that in general
the achieved speedup is related to the operational intensity
of a kernel, the size of the register file, and the size of the
first level memory, and may in practice vary between 2×
and 5×, with speedups on realistic kernels as high as 3.7×.
To sum up, the key contributions of this paper are:

1) A register file extension for Reduced Instruction Set
Computer (RISC) architectures that allows for implicit

encoding of data transfers within any instruction. We
present the necessary architectural changes in an exist-
ing multi-core platform (Section 2).

2) Competitive experimental results for the proposed ar-
chitecture applied to a low power multi-core system [4].
We provide a performance, power, and area analysis for
an implementation in a 22 nm technology and compare
against other systems (Section 4).

3) A discussion and preliminary results on how to extend
compilers to directly emit code that leverages the pro-
posed architectural changes (Section 4).

The remainder of this paper is organized as follows:
Section 2 describes the proposed SSR extension, Section 4
presents an evaluation, experimental results, and compar-
ison to other systems. The remaining sections describe re-
lated and future work, and offer concluding remarks.

2 ARCHITECTURE

We start with a description of the SSR extension in detail
and show the architectural changes necessary. As an imple-
mentation we extend a RI5CY (“riscy”) core [4] and PULP
cluster [7] with two SSR data movers. The RI5CY core has
a single-issue in-order pipeline, but it features a rich set of
micro-architectural enhancements that make it a challeng-
ing baseline when assessing efficiency in executing DSP
workloads. This includes the support for hardware loops
and post-increment load/store operations, which removes
the need for branches and many address calculations in
the innermost hot loops of a computation: hence RI5CY
actually achieves the single-issue performance bound for
many kernels. We first provide an overview of the SSR
architecture and then outline the necessary changes inside
the core (Section 2.2), at the core interfaces (Section 2.3), and
in the memory system (Section 2.5).

2.1 Overview

The key idea of SSR is to intercept accesses to certain
registers at the register file and route those accesses out of
the core and into the memory system. A separate address
generator assigns an address to each such access. Since the
address generator is configured up front, this can be seen
as proactively prefetching the next accesses, rather than
reactively hiding access latency. In our implementation we
assign stream semantics to the t0 and t1 integer and the
ft0 and ft1 floating point registers. Reads from and writes
to these four registers will be diverted out of the processor.
These are the first two caller-saved integer and floating point
registers in RISC-V.

The architectural changes can be subdivided into two
main parts: the mapping from register accesses to transac-
tions on a stream interface, and the mapping from those
transactions to memory accesses. In our case we perform
the mapping to the stream interface inside the RI5CY core
and the mapping to memory accesses using a data mover
outside the core. This minimizes the changes to RI5CY and
exposes a clean interface.

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 3

Core

R
e
g

is
te

rs

A
LU

LS
U

ready
ID

Stage
EX

Stage
WB

Stage
IF

Stage

Fr
o
n
te

n
d

Data Mover

ready valid

Back-pressure SSR addition*

*

* *

*

**

**

**

**

Cluster

TCDM

CoreCoreCore
SSRSSRSSR

...

Pe
ri

p
h
e
ra

ls
 /

 D
M

A

ICACHE

RI5CY RI5CY RI5CY

64 kB

XBAR

** ****

Memory Ports

Figure 1. On the left: High-level data flow of the SSR extension in a
single core. Read and write accesses to certain registers are filtered and
diverted out of the processor core. The data mover then assigns memory
addresses to the accesses and forwards them into the memory system.
On the right: cluster of multiple cores, attached to TCDM and peripherals
via logarithmic interconnect (XBAR). Pipeline additions to control back-
pressure marked in blue (∗); SSR data path additions marked in purple
(∗∗).

RF

RA

RE RD
1

0

SSR?

1

0

1

01R
A

D
D

R
R

V
A

LI
D

R
D

A
TA

R
R

E
A

D
Y

RF

WA

WE
1

0

SSR?

1

01W
A

D
D

R
W

V
A

LI
D

W
R

E
A

D
YWD

W
D

A
TA

Write Ports Read Ports

S
S

R
_W

D
A
TA

S
S

R
_W

A
D

D
R

S
S

R
_W

V
A

LI
D

S
S

R
_W

R
E
A

D
Y

S
S

R
_R

A
D

D
R

S
S

R
_R

V
A

LI
D

S
S

R
_R

D
A
TA

S
S

R
_R

R
E
A

D
Y

Figure 2. Additional circuitry required per register file write port (left)
and read port (right) to accomodate stream semantics. The additions
are implemented as a wrapper around the core’s existing register file
(RF). The SSR access check “SSR?” is equivalent to evaluating A ∈
{t0, t1, ft0, ft1} & E, where A is the register address and E the SSR
enable CSR bit. See Section 2.2.1 for details.

2.2 Core
The following modifications to the processor core are neces-
sary to map register accesses onto a stream interface:
• The register file must be extended to intercept and re-

route accesses to a subset of registers.
• The stream interfaces, one per register file port, need to

be exposed in the core’s port list.
• A Control and Status Register (CSR) is needed to enable

or disable stream semantics.
• Additional stall conditions and back pressure paths

introduced by the stream interface must be considered
in the core controller.

In the following paragraphs we provide a detailed descrip-
tion of each of these modifications.

2.2.1 Register File
The fundamental architectural change of the SSR extension
is in the processor’s register file. A generic vanilla register
file consists of read ports which supply the operands for
subsequent pipeline stages, and write ports which store
back the result of an instruction. In our case the original
register file has three read and two write ports. For SSR
we would like to intercept accesses to a certain set of

registers and, instead of accessing the register file, perform
a read or write transaction on the external stream interface.
Figure 1 depicts the high-level data path implied by this
architectural change. Instead of directly routing read and
write accesses to the register file, we first determine if an
accessed register has stream semantics enabled and if yes,
re-route the access onto the corresponding stream interface.
Each port into the register file has a corresponding stream
interface. RISC-V with “IFD” extensions allocates 32 integer
and 32 float registers, and uses 5 bit to address them. The
RI5CY core used in our implementation fuses these into a
register file with 64 registers and 6 bit addresses, where the
most significant address bit is set depending on whether
the requesting instruction is an integer or floating point
operation.

Figure 2 outlines the additional circuitry needed per
write and read port. In both cases we determine if an access
has stream semantics (“SSR?”) by checking the following
conditions:

1) The register address WA or RA must be one of the
registers with stream semantics (t0, t1, ft0, ft1 in
our implementation).

2) The stream semantics must be enabled in the core’s
CSRs.

If both conditions hold the transaction is routed out of
the core via a stream interface. These interfaces use a
valid/ready handshake which allows for the data mover
and memory system to assert back pressure into the core
if a request cannot be serviced immediately. The additional
hardware is implemented as a wrapper around the core’s
existing register file.

2.2.2 Control and Status Registers
The SSR extension needs to be opt-in and disabled by
default. This allows code that does not benefit from the
use of streams to have the full set of registers available.
Furthermore it maintains compatibility with existing code
and code generated by a compiler that is not aware of the
extension. To this end, we have added the ssrcfg CSR
with address 0x7C0 to the core. It contains a single bit that
enables or disables stream semantics in the core. The subset
of registers with stream semantics is fixed in hardware and
can only be enabled or disabled all at once. Sections of code
using SSR are expected to set this bit at their beginning and
clear it at their end, essentially defining an “SSR region” in
the code. Special care must be taken to handle interrupts
and exceptions; see Section 2.4.

2.2.3 Pipeline Considerations
Our proposed architectural extension has the following im-
plications on the processor pipeline:

1) First and foremost, due to its newly-gained stream
nature the register file loses its idempotency. A non-SSR
processor may not contain any control signals to pre-
cisely enable or disable register accesses during stalls,
since reading or writing the same register with identical
data has no consequences in an idempotent register
file. As an example, a multi-cycle instruction may apply
bogus data to its destination register during all but the
last cycle of execution, and only present valid data in its

4

Core Data Mover

LS
U

R
e
g

.
Fi

le
Lane 0

AGU

Lane 1
AGU

Po
rt

 1

co
n
fi
g

loads/stores

t0
/f

t0
t1

/f
t1

Switch

R
e
a
d

S
tr

e
a
m

s
W

ri
te

S
tr

e
a
m

s

co
n
fi
g

Memory

Po
rt

 2

AGU

L0
e
n

e
n
d

+

S
tr

id
e
s

co
n
fi
g

Po
in

te
r

Priority Encoder

L1
e
n

e
n
d

L2
e
n

e
n
d

L3
e
n

e
n
d

en

d
o
n
e

a
d
d
r

e
n

select

0 1 2 3

3
2
1
0

Figure 3. Above: Architecture of the data mover which translates from
a stream of register accesses to the corresponding memory addresses
and accesses. Below: Architecture of an individual AGU with four nested
loops. “L0” to “L3” are loop counters. Patterns are configured via the
“config” interface, which modifies the loop counters, strides, and pointer
register.

last cycle. As an optimization the processor may choose
to enable register writes during all cycles, knowing that
the last cycle will eventually override bogus data with
the valid result. Similarly, an instruction may keep read-
ing registers even during a pipeline stall. With SSR such
optimizations are not possible and additional signals
must be added to ensure each instruction accesses its
registers exactly once. Similarly, a compiler may not
delete redundant writes to an SSR. All of the following
considerations are a result of this loss of idempotency.

2) Instructions that enable or disable stream semantics,
CSR writes in the RISC-V case, require pipeline bubbles
to be inserted between them and subsequent instruc-
tions operating on stream registers. This is necessary
since the register file access is likely to be located
in a different pipeline stage than the CSR write. A
non-idempotent access to a stream may therefore er-
roneously occur before a preceding SSR-disabling CSR
write fully executes. Vice versa, a stream access may be
skipped due to the preceding SSR-enabling write not
having taken effect.

3) Instructions that operate on SSRs may not access the
register file speculatively. In the case of RI5CY, this
requires such instructions to be stalled in the decode
stage when a branch is currently being resolved.

4) The register file must be able to exert back-pressure into
the pipeline on reads and writes. A non-SSR processor
may not provision for such a scenario. In the RI5CY
case, additional stall control signals are needed from
the register file to the instruction decode stage for reads,
and to the write-back stage for writes.

2.3 Data Mover
The modifications outlined thus far transport SSR register
accesses selectively out of the core. Figure 3 shows the data
mover that is used to map these accesses into the memory

system. It consists of three general parts described in the
following.

Each port into the register file is exposed as a separate
stream at the boundary of the core, three read and two
write streams in our case. A switch uses the register address
to map each access on these streams to the targeted data
mover lane. Our example contains two such lanes, one for
the t0/ft0 and one for the t1/ft1 registers.

Each lane consists of a First-In First-Out (FIFO) queue
to buffer read and write data. An address generator based
on the one presented by Schuiki et al. [8] and Conti et al.
[9] assigns memory addresses to the stream-based accesses
performed by the core. The lane can be put into read mode,
in which case the address generator is used to fetch data
from memory and store it in the FIFO. If put into write
mode, the address generator is used to tag each datum
written into the FIFO with an address and send it off into the
memory system. This requires a register to be exclusively
used as source or destination operand until the complete
address pattern has been exhausted; thus a stream cannot
be used to interleave read and write operations.

A significant advantage of this architecture is the fact
that the data mover can pro-actively perform memory reads.
In this way, when the processor decides to read from an SSR,
the datum is already present. This is in stark contrast to a
regular load instruction which merely initiates a memory
access. Subsequent instructions must wait for the accessed
data to return, which amounts to at least one cycle of
delay. SSR-based operations thus become significantly more
memory latency tolerant than regular loads. This pro-active
read introduces a source of incoherence in that a write to a
memory location does not update the corresponding value
in the read FIFO. Read streams started after a write will
always see the written value. Thus to avoid data races write
operations shall not be performed on a memory range that
is currently used in a read stream. This limitation proves to
be inconsequential in all kernels investigated in this paper.

2.4 Interrupts and Exceptions

The AGUs and enable-state of the SSRs add additional
implicit state to the processor core that must be adequately
saved/restored. Depending on the features of the processor
in question, and the requirements of the target applications,
this comes at varying complexity. In general we identify the
following three options of handling exceptions:

1) No exceptions: The simplest approach is to not support
exceptions at all. While not applicable to operating-
system-capable cores, specialized number-crunching
cores, e.g., the ones in a GPU, have very limited excep-
tion support [10]. Since control flow cannot be diverted
in this case, no special treatment is required.

2) Deferred exceptions: A similar approach is to defer
exception handling to SSR-disabled regions. While this
may incur significant latency in the presence of long-
running streams, it allows number-crunching cores to
support a minimal amount of external interrupts. Ap-
plicability is limited to a similar scenario as the above
approach, since the utility of deferred exceptions is very
limited in practice [11, p. 261]. This is mainly due to
difficult debugging and operating systems requiring

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 5

Table 1
Levels of exception support required for different processor core

features and applications. See Section 2.4 for details.

External Virtual
Exception Support Interrupts Memory Application

1) No exceptions no no GPU
2) Deferred exceptions yes no IoT
3) Precise exceptions yes yes CPU

finer-grained exceptions. It is also necessary that the
core cannot generate memory exceptions, since stream-
ing over a sufficient number of pages could otherwise
livelock the core.

3) Precise exceptions: It is also possible to fully support
precise exceptions with SSRs. This is required for cores
with virtual memory and/or memory protection, or
cores that must give timing guarantees on exception
handling. The SSRs expose their precise architectural
state as registers, which become part of the saved/re-
stored thread context. Streams can thus be interrupted
and resumed at will. Such a scheme is easily imple-
mented in an operating system, that already features
a platform-specific exception handler. As an upper
bound, precise exceptions double the area and power of
the AGUs, since now in addition to the AGU running
ahead as data is requested, a separate AGU is required
which advances in synchrony with the instruction
stream, and thus represents the “architectural state” of
the stream. Upon an exception, this AGU reflects the
state before the exception occurred, and is used to re-
start execution once the exception handler returns.

Consider Table 1 for an overview of processor features,
applications, and required exception support. Our imple-
mentation is of the “deferred exceptions” kind: the RI5CY
core supports external interrupts, but these remain disabled
during SSR operation. Since we operate directly on local
scratch pad memory without virtual addressing or memory
protection, the only source of memory exceptions are ac-
cesses to unmapped addresses, after which the program is
not expected to resume. Rather, the exception handler aborts
the SSR streams and terminates the program. However, note
that this does not preclude the use of virtual memory in the
remainder of the system: data is moved explicitly via a DMA
which can support efficient page fault handling [12].

2.5 Memory System

It is important to note that the SSR extension increases the
peak memory bandwidth that a core can request from the
memory system. In our implementation this translates into
an increase in the number of ports into the local scratch pad
memory, but may correspond to additional ports into the
top-level cache in other systems. The following aspects are
relevant for choosing a reasonable number of SSRs, streams,
data movers, and ports into memory.

2.5.1 Impact of SSRs and Streams
On an architectural level, the memory traffic that a core
may generate via SSRs is limited by two factors: (1) the
number of ports into the register file, and (2) the number

of register operands in an instruction. The former is five
in our implementation (three read and two write ports).
The latter is four as defined by RISC-V [3] (three source
and one destination registers). The smaller of the two is the
upper bound on the memory traffic that can be generated,
4word/cycle in our case.

2.5.2 Impact of Data Movers
The number of data movers determines the number of
independent memory address patterns a core can keep track
of. Since the data movers are tied to individual registers,
there need to be at least the same number of registers with
stream semantics as there are data movers. Multiple SSRs
may address the same data mover, for example to use the
data mover both in integer and FP instructions. This is the
case in our implementation where the t0 and ft0 registers
are bound to the same data mover lane. As such the number
of data movers puts an additional upper bound on the
memory traffic a core may generate, 2word/cycle in our
implementation.

In this paper we only consider a simple data mover that
generates a single memory access per stream transaction.
This is not a requirement. More elaborate data movers may
issue more memory traffic. Consider indirect addressing for
example: in such a setting a data mover would load an
address from memory, then use that address to perform
the load or store corresponding to a stream transaction,
effectively accessing 2word/cycle. Depending on the cost
per memory port and the achieved speedup, such schemes
may warrant the use of more than one port per data mover.

Not every data mover necessarily requires a separate
port into memory, however. A system might provide, for
example, eight data movers to independently track eight
separate sequences of memory addresses, and instruc-
tions would pick a sequence via the stream registers they
use. However such a system would still be limited to
4word/cycle of traffic due to the limited number of operand
registers (see Section 2.5.1). In this case it would be beneficial
to multiplex the eight data movers onto four memory ports
via an arbitration scheme.

2.5.3 Impact of Memory Ports
Due to the nature of single-issue load-store architectures, an
instruction may either exercise the LSU or the data mover,
but never both. (Technically an SSR could be used as the des-
tination register for a load, but we do not consider memcpy
a critical application.) Therefore the cumulative bandwidth
generated by the LSU and one of the data movers never
exceeds 1word/cycle. Since memory ports are costly we thus
suggest to always multiplex the core’s LSU and one of the
data movers into a single port.

Reduced to their fundamental instruction, operations
such as multiply-add have an intensity of 0.25 op/word, ad-
dition or multiplication one of 0.33 op/word, and multiply-
accumulate of 0.5 op/word, meaning for every operation
performed they consume and produce four, three, and two
data words, respectively. In order to sustain one instruction
per cycle, a core would require four, three, and two ports
into the memory system, respectively. Our implementation
allocates two memory system ports per core and uses two
data movers, one of which is multiplexed with the core’s

6

la %0, ssr_registers
addi %1, %N, -1
sw %1, (DM0|BOUND_0)(%0)
sw %1, (DM1|BOUND_0)(%0)
li %2, sizeof(float)
sw %2, (DM0|STRIDE_0)(%0)
sw %2, (DM1|STRIDE_0)(%0)
sw %A, (DM0|READ_1D)(%0)
sw %B, (DM1|READ_1D)(%0)
csrwi ssrcfg, 1
lp.setup L0, %N, +1
fmadd.s %x, ft0, ft1, %x
fmadd.s %x, ft0, ft1, %x
[repeats 998x]
csrwi ssrcfg, 0 for (i = 0; i < N; i++) {

 sum += A[i] * B[i];
}

A
d

d
r.

 P
a
tt

e
rn

 C
fg

Enable

DisableH
o
t

L
o
o
p

 I
te

ra
ti

o
n

s

2

4

3

1

Corresponding C Code:

SSR Implementation:

= 1012 instructions executed

Baseline Implementation:

lp.setup L0, %N, +3
p.flw ft0, 4(%A!)
p.flw ft1, 4(%B!)
fmadd.s %x, ft0, ft1, %x
p.flw ft0, 4(%A!)
p.flw ft1, 4(%B!)
fmadd.s %x, ft0, ft1, %x
[repeats 998x]

= 3001 instructions executed

3

H
o
t

L
o
o
p

 I
te

ra
ti

o
n

s

Figure 4. Basic usage pattern of SSRs. Address patterns are con-
figured by writing to the memory mapped address generator registers
(1), enabling the stream semantics by writing to the ssrcfg CSR (2),
performing the actual hot loop (3), and disabling the stream semantics
again (4). Right-hand side shows baseline RISC-V implementation with
RI5CY custom extensions. Note the two additional post-increment load
operations per hot loop iteration absent from the SSR case. See Sec-
tion 3.

LSU data port using a fixed priority arbitration scheme. This
allows the core to sustain kernels with an operational inten-
sity of 0.5 op/word or higher, which covers the pervasive
multiply-accumulate operations found in linear algebra and
machine learning.

3 PROGRAMMING MODEL

The fundamental SSR usage follows the simple sequence
outlined in Figure 4: address pattern configuration (1),
enabling the stream semantics (2), computation (3), and
disabling the stream semantics again (4). The configuration
registers of the data mover are memory mapped and can
be accessed by the processor via load and store instructions.
An in-depth explanation of the available registers follows in
Section 3.1. The region of code that makes use of the stream
semantics (the “SSR region”) must be surrounded by writes
to the ssrcfg CSR to enable SSRs upon entry and disable
them again upon exit of the region. The SSR region itself can
contain any sequence of assembly instructions.

3.1 Pattern Configuration
Each address generator contains ten configuration registers
and supports up to four nested loop dimensions. We have
found four dimensions to cover all problems investigated
later in Section 4.2. This number is a design parameter and
can be changed. Looping over additional outer dimensions
may be performed in software. The status register con-
tains the address pointer, the number of enabled nested
loop dimensions, stream direction (read or write), and a
flag indicating whether the end of the pattern has been
reached. A streaming operation is triggered by writing
to this register. The repeat register allows each datum
loaded from memory to be emitted into the core multiple
times. This is useful if a value loaded from memory is
used as an operand multiple times. Eight registers control
the iteration behavior, two for each loop dimension. The
bound0-3 registers contain the number of iterations and the

stride0-3 registers the address increment for each loop.
Note that while the SSR extension allows for many address
stepping and data transfer instructions to be removed from
the instruction stream, the program must still issue the exact
number of compute instructions (such as fmadd) to fully
exhaust the pattern in the address generator. This means
that the fundamental loop nest containing the compute
instruction must still be present. As we will show this
is most easily accomplished through the use of hardware
loops.

3.2 Automated Code Generation in LLVM
Mapping nested loops from an input language such as C
to SSRs is straightforward if the loop bounds are constant
for the duration of the loop and addresses are a linear
function of the indices. This is the case for many data-
oblivious kernels where the control flow does not depend
on the data values [13]. We propose the following recipe
for a pass to map loops to SSRs in the LLVM compiler
framework [14]. The pass operates on the Machine IR (MIR)
and is executed after instruction selection and before register
allocation takes place. At this stage trivial loop induction
variables have been identified and mapped to simple ad-
dress increments as far as possible. Our pass is divided into
the following phases:

1) Identify loops in the MIR data and control flow graph.
This information is already provided by the LLVM
infrastructure.

2) Visit all load and store instructions within the identified
loops. Check if the address expression is a simple
counter which increments by a constant amount. Since
the MIR is in Single Static Assignment (SSA) form this
can be done as a simple pattern match: We check if the
address is determined by a phi and add node loop in
the graph, and whether the input to the add is constant.
This check is done recursively across multiple nested
loop levels. Loads and stores which pass are marked as
candidates for SSRs replacement.

3) Allocate the candidates to the available data movers
(two in our case). We start with the deepest candidates
first, in terms of nesting level, which is a simple heuris-
tic for the number of loop iterations.

4) Emit instructions to configure the SSR before the loop
header.

5) Remove the load/store instruction from the MIR and
replace any uses with the corresponding stream regis-
ter.

6) Block registers with stream semantics in the register
allocation pass.

A limitation of following this recipe without further
considerations is that all loops will be mapped to SSRs as
far as possible. However, as we will show later, not every
loop benefits from SSRs. Especially very short loops may
take longer to execute with SSRs due to the increased setup
overhead. The decision whether to “SSR-ify” a loop should
thus be made either at compile time based on the expected
number of iterations via an execution trace or heuristic.
Or at runtime based on the actual number of iterations, in
which case both an SSR and non-SSR implementation must
be provided.

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 7

4 PERFORMANCE ANALYSIS

In this section we evaluate the impact and benefits of SSRs
on the ISA (Section 4.1), a single core (Section 5.2), and an
entire cluster (Section 5.3) in terms of performance, and area
and energy efficiency.

4.1 ISA-level Impact

In this section we provide an evaluation of the performance
and unit utilization impact of SSRs at the ISA level. We
assume an ideal memory system with a constant access
latency of one cycle. Consider the assembly code for a
reduction operation in Figure 5a as an example. In a stan-
dard RISC-V implementation the hot loop consists of six
instructions: two loads, two pointer increments, one Fused
Multiply-Add (FMA), and a branch. Of these only the FMA
is executed on the FPU and performs actual work towards
the result, putting the upper bound of FPU utilization at
17%. The proposed SSR extension allows the loads and
pointer increments to be implicitly encoded in the use of
ft0 and ft1 as input registers, as shown in Figure 5b. This
reduces the number of instructions in the hot loop to three:
one counter decrement, one FMA, and a branch; putting the
FPU utilization bound at 33%. Thus in a standard RISC-V
ISA core the SSRs bring an architectural speedup of 2×.

SSRs interoperate well with hardware loop extensions
such as those described by Gautschi et al. [4]. The use of
hardware loops removes the back-branch from the hot loop
and alleviates the need to explicitly track a loop counter. The
baseline code shown in Figure 5c now has five instructions
in the hot loop, with an FPU utilization bound of 20%. Using
SSRs the hot loop reduces to a single instruction: the FMA,
as shown in Figure 5e. Since loads and pointer adjustments
are handled by SSR, and the loop iteration is handled by the
hardware loop, the only thing left is the actual computation.
This puts the FPU utilization to 100%. The hardware loops
introduce an additional lp.setup instruction in the setup
code. Thus in the presence of hardware loops the proposed
SSR extension brings an architectural speedup of 5× with
respect to a vanilla micro-architecture.

The RI5CY core [4] used in our evaluation provides
additional instruction set extensions such as load/store
post-increment instructions. These allow for the pointer
increments in the baseline code to be elided as shown in
Figure 5d, reducing the hot loop to three instructions: two
post-increment loads and one FMA. Thus the upper bound
on FPU utilization is at 33%, and the SSR extension still
provides a speedup of 3×.

4.1.1 Setup Amortization Analysis

The SSR extension introduces additional setup instructions
at the beginning of a loop. This overhead must be amortized
via the speedup gained due to elision of memory transfer in-
structions in the loop body in order for SSR to be beneficial.
For our analysis we assume a loop nest of dimension d ∈ N
(and corresponding number of hardware loops), s ∈ N data
movers, and L ∈ Nd loop iterations and I ∈ Nd instructions
per nesting level. This yields the following model for the

Table 2
Number of instructions N , useful ALU/FPU utilization η, and associated
SSR-induced speedup S in the hot loop of a reduction, for integer and

floating-point arithmetic, and different numbers of unrolled loop
iterations U .

Kernel Arith. U no SSR with SSR S

N η N η

Standard RV32 int32 1 6 17% 3 33% 2×
+ Hardware Loops int32 1 5 20% 1 100% 5×
+ Post-Increment int32 2 6 33% 2 100% 3×

Standard RV32 fp32 1 6 17% 3 33% 2×
+ Hardware Loops fp32 3 11 27% 3 100% 3.7×
+ Post-Increment fp32 3 9 33% 3 100% 3×

total number of executed instructions in the SSR and non-
SSR case:

Nssr = 4ds+ s+ 2

(a)

+
d∑

i=1

(Ii + 1)
i∏

n=1

Ln −
d∏

i=1

Li (1)

Nbase = 1 +
d∑

i=1

(Ii + 1 + s

(b)

)
i∏

n=1

Ln −
d∏

i=1

Li (2)

In the above, (a) describes the one time setup overhead for
the SSR data movers before the loop nest; and (b) captures
the explicit data movement instructions necessary in the
non-SSR case (for example one load/store per data mover,
s in total). We are now interested in finding the break even
point where Nssr becomes smaller than Nbase and thus SSRs
become advantageous. Algebraic transformation yields:

Nssr ≤ Nbase ⇒ 4d+ 2 ≤
d∑

i=1

i∏
n=1

Ln (3)

Interestingly, the number of iterations Ii per nesting level
i does not affect the amortization behavior, and neither
does the data mover count s. As an instructive example,
let us assume that each loop in the nest performs the same
number of iterations l, and the overall loop nest thus per-
forms ld iterations. The SSR implementation outperforms
the baseline on loop nests with more than 5, 4, 1, or 1
overall iterations ld, for 1D, 2D, 3D, or 4D loop nests,
respectively. For the same scenario, Figure 6 outlines the
achieved useful ALU/FPU utilization η with SSRs for a
reduction over a d-dimensional hypercube with side length
l, and thus overall number of iterations ld. Each additional
loop level in the nest introduces an instruction overhead for
loop configuration, therefore requiring exponentially more
iterations to achieve the same useful utilization as for lower-
dimensional loops.

4.1.2 Data Dependency Hazards
Until now we have assumed no data dependency stalls
and all instructions to have one cycle latency, which holds
for an integer reduction. Loads and floating point FMAs
have two and three cycles of latency in RI5CY however,
which requires some amount of loop unrolling to avoid
any stalls. Table 2 shows the necessary unrolling and cor-
responding speedup S provided by SSRs. We define the
useful utilization η as the fraction of cycles where the
computation in the ALU/FPU contributes directly towards

8

fmv.w.x fa0, zero
lp.setup a0, +5
flw ft0, 0(a1)
flw ft1, 0(a2)
addi a1, a1, 4
addi a2, a2, 4
fmadd.s fa0, ft0, ft1, fa0
ret

fmv.w.x fa0, zero
la t2, SSR_CFG
addi t3, a0, -1
sw t3, BOUND0(t2)
li t3, 4
sw t3, STEP0(t2)
sw a1, PTR0_1D(t2)
sw a2, PTR1_1D(t2)
csrwi ssrcfg, 1
lp.setup a0, +1
fmadd.s fa0, ft0, ft1, fa0
csrwi ssrcfg, 0
ret

fl
w

fl
w

ad
di

ad
di

fm
ad

d.
s

fl
w

fl
w

ad
di

ad
di

fm
ad

d.
s

fl
w

fl
w

ad
di

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fm
ad

d.
s

fmv.w.x fa0, zero
slli t0, a0, 2
add t0, t0, a1
flw ft0, 0(a1)
flw ft1, 0(a2)
addi a1, a1, 4
addi a2, a2, 4
fmadd.s fa0, ft0, ft1, fa0
bne a1, t0, -5
ret

fmv.w.x fa0, zero
la t2, SSR_CFG
addi t3, a0, -1
sw t3, BOUND0(t2)
li t3, 4
sw t3, STEP0(t2)
sw a1, PTR0_1D(t2)
sw a2, PTR1_1D(t2)
csrwi ssrcfg, 1
addi a0, a0, -1
fmadd.s fa0, ft0, ft1, fa0
bnez a0, -2
csrwi ssrcfg, 0
ret

fl
w

fl
w

ad
di

ad
di

fm
ad

d.
s

bn
e

fl
w

fl
w

ad
di

ad
di

fm
ad

d.
s

bn
e

fl
w

ad
di

fm
ad

d.
s

bn
ez

ad
di

fm
ad

d.
s

bn
ez

ad
di

fm
ad

d.
s

bn
ez

ad
di

fm
ad

d.
s

bn
ez

ad
di

fmv.w.x fa0, zero
lp.setup a0, +3
p.flw ft0, 4(a1!)
p.flw ft1, 4(a2!)
fmadd.s fa0, ft0, ft1, fa0
ret

p.
fl

w
p.

fl
w

fm
ad

d.
s

p.
fl

w
p.

fl
w

fm
ad

d.
s

p.
fl

w
p.

fl
w

fm
ad

d.
s

p.
fl

w
p.

fl
w

fm
ad

d.
s

p.
fl

w

H
o
t

L
o
o
p

S
e
tu

p

H
o
t

L
o
o
p

S
e
tu

p

H
o
t

L
o
o
p

S
e
tu

p

S
e
tu

p
H

o
t

L
o
o
p

H
o
t

L
o
o
p

S
e
tu

p

Sample Trace

cycles
6 ins. 3 ins. 5 ins. 3 ins. 1 ins.

2x speedup 3x speedup
5x speedup

cycles cycles cycles cycles

+SSR +HWL +HWL +Post-Increment +HWL +SSRStandard RV32

(a) (b) (c) (d) (e)

Figure 5. Comparison of assembly kernels with different ISA extensions (above). Sample execution trace for each kernel with a single hot loop
iteration highlighted (below). From left to right: (a) baseline RV32 processor; (b) RV32 with SSR extension; (c) RV32 with hardware loops (HWL);
(d) RV32 with hardware loops and post-increment loads; (e) RV32 with hardware loops and SSR extension. See Section 4.1 for details.

 10

 100

 1000

 10000

 100000

50% 60% 70% 80% 90% 100%

d=1
d=2

d=3

d=
4

Lo
o
p

 N
e
st

 I
te

ra
ti

o
n
s

ld

Useful Utilization η of ALU/FPU

Figure 6. Useful ALU/FPU utilization with SSRs for a reduction over a
d-dimensional hypercube with side length l, and thus overall number of
iterations ld. Deeper loop nests contain more overall loop configuration
overhead, thus requiring longer-running loops to achieve the same
useful utilization as lower-dimensional loops. See Section 4.1.1.

the result, as opposed to address or branch calculations.
The integer reduction with post-increment loads requires
two-fold loop unrolling in the baseline case to avoid data
dependency stalls on the loads. The FP reduction addition-
ally requires three-fold loop unrolling in the SSR case to
avoid data dependency stalls on the accumulation register
due to the FMA latency. If all loop iterations are fully
unrolled (no data dependency stalls and all branch and
pointer increment instructions fully amortized) the SSR-
induced speedup reaches 3× in the limit in all cases.

We conclude that our proposed extension provides a
significant 2× to 5× speedup, specifically 3× in our im-
plementation in a DSP-optimized core. Furthermore it raises
the upper bound for useful compute unit utilization to >95%
for reasonably-sized loop nests. As we will show in the
following sections, these gains are not purely theoretical but
translate well into real-life speedups in single- and multi-
core settings.

4.2 Kernels

We have implemented the following kernels on our archi-
tecture to evaluate the performance benefits of SSRs:
• a reduction (dot product) over 2048 values;
• a scan (all prefix sums) over 4096 values;

• star-shaped stencils as they are found in the discrete
Laplace operators (stencil diameter 11) in 1D (1024
points) and 2D (64×64 points);

• the dense matrix-vector product (GEMV) of a 64×64
matrix and vector of 64 elements;

• the dense matrix-matrix product (GEMM) of two 32×32
matrices;

• the ReLU operation found in deep learning (max(0, x))
over 1024 values;

• the fast Fourier transform over 2048 values; and
• a bitonic sort network over 1024 values.

Problem sizes were chosen to fit into the first-level memory
(TCDM) to remove effects of DMA transfers to other parts
of the memory hierarchy from the analysis.

5 DESIGN AND IMPLEMENTATION RESULTS

5.1 Methodology

We based our implementation on RI5CY and the PULP
platform [4], a silicon-proven open-source RISC-V many-
core platform written in SystemVerilog. Our extensions were
directly implemented in the core’s RTL description. We
use the Synopsys Design Compiler to synthesize individual
RI5CY cores and entire PULP clusters with and without the
proposed hardware extension. Synthesis is performed under
worst-case conditions at 0.72V and −40 ◦C for GLOBAL-
FOUNDRIES’ 22FDX technology, a 22 nm FD-SOI node. The
design is constrained for a 500MHz worst-case performance
target. To estimate power consumption of the kernels we run
simulations of the synthesized netlists in QuestaSim and
perform a power estimation on the resulting trace using
Synopsys PrimeTime. Architectural performance improve-
ments in terms of cycles or unit utilization are technology
independent.

5.2 Single-Core Comparison

5.2.1 Performance
Figure 7 shows the speedup achieved by the proposed SSR
extension in a RI5CY core over a range of data-oblivious

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 9

0x

1x

2x

3x

4x

5x

Re
du

ct
io
n

Sc
an

St
en

ci
l 1

D

St
en

ci
l 2

D

GEM
V

GEM
M

Re
LU FF

T

Bito
ni

c
So

rt

S
p

e
e
d

u
p

3.0x

2.0x

3.7x

2.0x

3.1x 3.1x
3.4x

2.0x

2.8x

Figure 7. Speedup in a single RI5CY core extended with SSRs.

0%

20%

40%

60%

80%

100%

Re
du

ct
io
n

Sc
an

St
en

ci
l 1

D

St
en

ci
l 2

D

GEM
V

GEM
M

Re
LU FF

T

Bito
ni

c
So

rt
0

1

2

A
LU

/F
P
U

 U
ti

liz
a
ti

o
n

M
e
m

o
ry

 B
a
n
d

w
id

th
 [

w
o
rd

/c
y
cl

e
]

Without SSR With SSR

Figure 8. Useful ALU/FPU utilization η achieved by a single RI5CY core
without and with SSR extension, including all overheads. Note that for
the investigated kernels the utilization shown on the left axis is directly
proportional to the memory bandwidth shown on the right axis.

kernels. Again we assume an ideal memory system with a
constant access latency of one cycle. The implementations
are fully optimized such that the loop bodies only consists
of mandatory non-amortizable instructions. SSRs provide
a speedup between 2.0× and 3.7× across the kernels, and
generally at or above 2×.

Figure 8 shows the useful ALU/FPU utilization η of a
RI5CY core before and after adding the SSR extension when
executing the kernels outlined in Section 4.2. As outlined in
Section 4.1, we consider η to be the fraction of instructions
executed that contribute to the result. Without SSRs, the
utilization is generally around 33%, heavily bounded by the
number of load/store instructions during which the corre-
sponding computational units do not perform any useful
work. With SSRs, the hot loop can generally be reduced to
the instructions essential for computing the result, such that
the utilization during the hot loop reaches close to 100% in
many cases.

Not only does the proposed architecture extension allow
for almost perfect utilization of the functional units for
many kernels, it also shifts the execution bottleneck from
the instruction stream to the data interface. In the case of,
for example, the hot loop of a reduction our implementation
without SSRs would issue two loads over three cycles (66%
data memory bandwidth utilization with one port), one

IF ID EX FPU Registers others Data Mover

114 kGE

102 kGE

5 11 22 31 28 8 9

5 11 22 31 25 8

+2% +9%
kGE

kGE

Figure 9. Area breakdown of a RI5CY core with (top) and without
(bottom) the SSR extension in 22 nm technology. Shown are the area
of the instruction fetch (IF), instruction decode (ID), and execute stages
(EX), the FPU, register file, and other components inside the core; as
well as the data mover outside of the core. Introduction of SSRs amount
to a core-internal overhead of 2 %, while the addition of a data mover and
memory port multiplexer outside of the core increases area by another
9 %. In total the addition of SSR increases area by 11 %.

computation over three cycles (33% compute utilization),
yet three instruction over three cycles (100% instruction
bandwidth utilization). With SSRs, the core issues two loads
over one cycle (200% data memory bandwidth utilization
with one port, 100% with two ports), one computation over
one cycle (100% compute utilization), and one instruction
over one cycle (100% instruction bandwidth utilization). As
indicated in Figure 8 the achieved memory bandwidth is
proportional to the ALU/FPU utilization. The SSRs allow
the core to ingest around 3× more data because a single
instruction can consume three registers, which directly cor-
responds to the speedup and utilization gain achieved.

5.2.2 Critical Path
In our implementation the SSR extension adds up to 11 lev-
els of logic to read and write timing paths surrounding the
register file. This includes register address comparison and
data multiplexing inside the core, and arbitration and FIFO
access outside of the core. The critical path of the processor
lies within the FPU and multiplier in the “execute” stage and
measures 86 levels of logic. For comparison the “instruction
decode” stage where the register file accesses occur covers
merely 31 levels of logic. The addition of 11 levels of logic
there has no effect on the critical path. Additional timing
arcs exist from the “execute” stage to the register file’s write
port. SSRs add 4 levels of logic to these paths, an increase
of 4.7% in terms of logic depth or 85 ps (4.3%) in terms of
delay. We thus conclude that the SSR extension increases the
critical path by less than 5%.

5.2.3 Area
Figure 9 shows the area breakdown of a RI5CY core. First
and foremost, the introduction of SSRs increases the area of
the RI5CY core by 11.6 kGE or 11%, of which 2% are due
to core-internal changes around the register file, and 9% are
due to the data mover and memory port multiplexer around
the core. This is a moderate cost considering that a core
with SSR-equivalent capability would have to issue three
instructions per cycle. For comparison, the SweRV dual-
issue core [15] has an area of 237 kGE1 at 902MHz. This is
due to a significant increase in complexity in the instruction
fetch and decoding stages, and additional ports into the
register file. Note that this does not yet include the impact

1. Synthesized by us for the same technology; performance for SSG
0.72V −40/125 ◦C corner. Excludes caches.

10

IF ID EX FPU Registers Data Mover

4.9 mW

3.7 mW

0.6 0.7 0.9 1.0 0.5 0.6 0.6

0.6 0.7 0.4 0.3 1.0 0.6

+16% +17%
mW

mW

others

Figure 10. Power breakdown of a RI5CY core with (top) and without
(bottom) SSRs executing a dot product. SSR accounts for a power
consumption increase of 16% inside and 17% outside of the core, for
a total increase of 33%. This is due to increased overall activity of the
core. Note how FPU power increases due to higher utilization, and how
register file power decreases due to the SSRs directly operating on
memory. Power scaled to 1GHz.

on the instruction cache that comes with a tripled instruc-
tion bandwidth. The SweRV core achieves 38.3Gop/smm2,
which is 1.7× less than the 66.1Gop/smm2 of RI5CY with
SSRs. Note that SweRV is only dual-issue and has no FP
support; a core with matching triple-issue and FPUs would
further increase hardware complexity and overhead.

5.2.4 Energy Efficiency

Figure 10 shows the power breakdown of a RI5CY core.
The introduction of SSRs increases the power consumption
of the core by 33%, of which 16% are due to core-internal
changes and 17% outside of the core. Note that the in-
crease in power consumption is more significant than the
increase in area, since the addition of SSRs significantly
increases the computational throughput of the core. This can
be seen in the increased FPU power (0.3mW to 1.0mW).
Since most data is now directly streamed from memory,
the power consumed by the register file is reduced from
1.0mW to 0.5mW, while the new data mover accounts
for a corresponding additional 0.6mW. Together with the
2× to 3× speedup this translates into an energy efficiency
improvement of 1.5× to 2.3× for the various kernels. Note
that this does not yet account for energy saved in the
instruction cache due to a reduced instruction bandwidth.
This effect will be explored in the next sections.

5.3 Multi-Core Comparison

To evaluate the impact in a multi-core setting, we deploy
the RI5CY core enhanced with SSRs described in Section 5.2
in a PULP cluster [7]. The cores operate on a shared TCDM
which provides single-cycle access latency (see Figure 1).
The memory is separated into multiple banks that are indi-
vidually arbitrated. Multiple cores accessing the same bank
will see one core succeed and the other cores stall for a cycle.

5.3.1 Performance

The results presented for a single core in Section 5.2 translate
well into a cluster setting with multiple cores, with the
speedup remaining largely the same. This multi-core envi-
ronment introduces two new sources of overhead compared
to a single-core environment:

1) Contention in the memory system. While the number of
banks in the TCDM is chosen to provide approximately
twice the bandwidth that the processors can request,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Re
du

ct
io
n

GEM
V

GEM
M

R
e
la

ti
v
e
 E

xe
cu

ti
o
n
 T

im
e

6 cores without SSR
2 cores with SSR
3 corse with SSR

Figure 11. Execution time of a cluster with 3 cores and 3 FPUs with
SSRs, a cluster with 2 cores and 2 FPUs with SSRs, both relative to a
cluster with 6 cores and 3 FPUs without SSRs.

accesses into the same memory bank still conflict. De-
pending on the memory access pattern of a kernel, this
leads to the cores observing stall cycles on the memory
interface. In practice we observe that by employing data
placement such as non-power-of-two data dimensions
and offsets, >80% of memory accesses are served imme-
diately.

2) Parallelization and coordination overhead. The kernels
require additional instructions to subdivide the prob-
lem space across the available cores. These occur gen-
erally outside the hot loop of the computation and are
easily amortized over the problem size. Some kernels
such as the FFT operate in stages, with the cores re-
quiring synchronization after each stage. This synchro-
nization is achieved with a dedicated event unit that
provides efficient hardware barriers [16]. In practice the
overhead of this synchronization is negligible.

Given the two- to three-fold speedup across kernels,
we now evaluate by how much the number of cores and
FPUs in the SSR-augmented cluster can be reduced while
maintaining the performance of the non-SSR cluster. To this
end we use a six core cluster with three FPUs, each shared
by two cores, without SSRs as performance baseline. We
then evaluate the performance of a two and a three core
SSR-enabled cluster with core-private FPUs to this baseline.
Figure 11 shows the kernel execution times for the two SSR
clusters normalized to the execution times in the baseline
cluster. We are interested in the cases where the ratio of
execution times is close to one, at which point the reduced
cluster perfectly matches the performance of the baseline. In
order to match performance, kernels with an SSR-induced
speedup around 2× are ideally executed on the three core
cluster, while kernels around 3× speedup shall run on
the two core cluster. The next sections evaluate how this
reduction in size and complexity translates into area and
energy savings.

5.3.2 Area
Figure 12 shows a detailed area breakdown for the three
different cluster configurations described in Section 5.3.1.
As elaborated above the smaller clusters offer equivalent
performance across the kernels due to the addition of SSRs.

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 11

TCDM DMA ICACHE Cores

2.02 MGE

1.47 MGE

517 59 125 599 614

517 52 83 75 400 340

kGE

kGE

Misc.
Interconnect

108

1.22 MGE

517 21 6463 323 kGE227

6
 c

o
re

s
n
o
 S

S
R

3
 c

o
re

s
w

it
h
 S

S
R

2
 c

o
re

s
w

it
h
 S

S
R

Figure 12. Area breakdown of three clusters: 6 cores/FPUs without
SSRs (top), 3 cores/FPUs with SSRs (middle), and 2 cores/FPUs with
SSRs (bottom). See Section 5.3.2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

6 cores
without SSR

3 cores
with SSR

2 cores
with SSR

2x

A
re
a

 E
ff
c
ie
n
c
y
 [
G
o
p
/m
m
²s
]

 0

 10

 20

 30

 40

 50

 60

 70

6 cores
without SSR

3 cores
with SSR

2 cores
with SSR

2x

2x

E
n
e
rg
y
 E
ff
c
ie
n
c
y
 [
G
o
p
/W
s
]

Figure 13. Area efficiency (left) and energy efficiency (right) of the three
investigated cluster configurations, given as the number of operations
per second achieved on a reduction workload, per area and power
consumption of the cluster. See Section 5.3.2 and Section 5.3.3.

An interesting observation is the fact that the reduction
in the number of cores provides additional savings in the
cluster infrastructure. Fewer cores require less instruction
bandwidth, which allows us to reduce the size and paral-
lelism of the instruction cache. Furthermore the DMA and
event unit need to provide fewer control ports. As such the
270 kGE to 390 kGE saved by removing cores translate into
an overall saving of 550 kGE to 800 kGE when considering
all secondary effects on the cluster.

This reduction in area at no loss in performance trans-
lates into a significant efficiency gain in terms of operations
per second and area. Figure 13 shows the area efficiency
achieved for the different cluster configurations. The intro-
duction of SSRs yields and area efficiency improvement of
2×.

5.3.3 Energy Efficiency
Figure 14 shows a power breakdown for the three different
cluster configurations. We use a trace of the reduction kernel
to evaluate the power consumption. Power was estimated
for typical silicon at 0.8V and 25 ◦C. The smaller clusters
with SSRs provide a 1.3× and 1.7× reduction in power
consumption while maintaining a performance equivalent
to the baseline cluster without SSRs. Note again that the
reduction in cores saves more than just the core power itself,
due to a reduction in cluster infrastructure, as described
in Section 5.3.2. Figure 13 shows how the reduction in
cluster power influences the per-operation energy efficiency.
The proposed SSR extension provides an increase of 2× in
energy efficiency across the investigated kernels.

TCDM ICACHE Cores

41 mW

32.1 mW

10.8 1.3 3.9 21.1

12.5 2.6 3.0 1.6 12.4

mW

mW

4.3

23.6 mW

11.5 1.4 1.6 0.7 mW8.4

6
 c

o
re

s
n
o
 S

S
R

3
 c

o
re

s
w

it
h
 S

S
R

2
 c

o
re

s
w

it
h
 S

S
R

Interconnect
Misc.

Figure 14. Power breakdown of three clusters: 6 cores/FPUs without
SSRs (top), 3 cores/FPUs with SSRs (middle), and 2 cores/FPUs with
SSRs (bottom). The clusters are running a reduction kernel; estimated
for 1GHz. See Section 5.3.3.

5.3.4 Instruction Pressure
One of the main benefits of SSRs is that they reduce the
number of instruction fetches. The two-core cluster with
SSRs executes 3×, 3.2×, and 3.5× fewer instructions on the
kernels in Figure 11 than the six-core cluster without SSRs.
Power consumption of the instruction cache is reduced by
5.6×, further facilitated by the reduced number of cores.

5.4 Amdahl’s Law and Strong Scaling
We observe an interesting effect of SSRs on parallel ker-
nels. A dot product executed on a single core experiences
a speedup of 3× through the use of SSRs. In a six-core
cluster the speedup drops to 2.2×. This is due to additional
overhead such as work splitting and synchronization that
is purely sequential and cannot be parallelized, as per
Amdahl’s law. As shown in Figure 11, a two-core cluster
with SSRs matches the performance of a six-core cluster
without SSRs. This is thanks to the proposed architecture
providing a speedup to sequential code by improving how
well a single instruction stream can utilize computational
resources. Since this reduces the number of cores — and
thus parallelism — required to maintain a given compute
performance by 2-3×, the implications of Amdahl’s law
and associated strong scaling are significantly mitigated. A
system with SSRs requires 2-3× less compute resources and
separate instruction streams to achieve a given performance,
reducing the parallelization overhead correspondingly.

5.5 Automated Code Generation
The compiler additions outlined in Section 3.2 allow kernels
to leverage the SSR extension without explicit instruction by
the programmer. Applied to a reduction kernel, our LLVM
pass achieves a 2.0× speedup over the baseline, compared
to the 2.1× speedup of the manual implementation. In
both cases manual replacement of hardware loop and DSP
instructions were necessary since LLVM does not yet fully
support all instruction set extensions of the RI5CY core. The
remaining 5% of performance gap are due to sub-optimal
instruction selection during SSR configuration in our proto-
type pass. This result shows the promise of using automated
passes in later stages of a compiler to leverage SSRs in a
manner transparent to the programmer. Existing software
would be able to make use of our architectural extension via
simple recompilation without the need for re-engineering

12

work. Further work includes improved handling of nested
loops and only selectively mapping loops to SSRs based on
compile-time heuristics or runtime knowledge.

5.6 Comparison to Other Cores
Table 3 outlines the impact of our architectural extension in
comparison to other processor cores. We count FMA as 1 op
and normalize silicon area to our 22 nm technology node.
Where otherwise unavailable we have estimated power
consumption as proportional to area relative to the Ariane
core [17] listed in Table 3. The kernel in question is a
reduction with no data reuse, such as a dot product. For our
comparison we consider an entire cluster of RI5CY cores as
described in Section 5.3 to also capture the contributions of
the instruction cache and TCDM as an equivalent to the L1
caches in other processors. In general we observe that due
to factors such as bit width, Single Instruction Multiple Data
(SIMD) vectorization, cache sizes, and target speed, area and
energy efficiency do not necessarily correlate.

5.6.1 Peak Utilization
Table 3 lists the maximum theoretical utilization each core
can achieve (“Util. Limit”). We define this metric as

ηmax = lim
N→∞

η(N) (4)

for a problem size N . The case where N tends to infinity
is interesting because it captures inherent inefficiencies that
remain even when setup and loop overheads have asymp-
totically disappeared. For example, a dot product on RI5CY
without SSRs has a constant setup overhead of two and a
loop body of three instructions (see Section 4.1.1). With SSRs
the overhead is seven and the loop body one instruction.
Each loop iteration contains one “useful” operation. The
utilization limit thus is:

lim
N→∞

N

2 + 3N
= 33% (without SSR) (5)

lim
N→∞

N

7 +N
= 100% (with SSR) (6)

As shown in Figure 6, RI5CY with SSRs already reaches
close-to-peak utilizations at practical problem sizes, for ex-
ample 93% at N = 100, and 99.3% at N = 1000. This
groups processors into “efficiency classes” according to the
peak utilization they can theoretically achieve. Single-issue
in-order cores are limited to 33% as elaborated throughout
this paper. Dual-issue cores reach 50% due to the ability to
overlap instructions. Finally vector processors reach up to
100% due to the ability to overlap long-running instructions.

5.6.2 Single-Issue Cores
The Rocket core [18], [23] is a single-issue, in-order, 32 bit
core. It suffers from the same bottleneck as RI5CY without
SSRs. RI5CY with SSRs provides a 1.1× and 6.2× increase in
area and energy efficiency, respectively.

5.6.3 Multiple-Issue Cores
BOOM [19] and SweRV [20] are both dual-issue, out-of-
order, 32 bit cores. The ability to issue a load/store in
parallel with a computation allows for a peak utilization η of
50% on long reductions. SSRs outperform BOOM by 6× in

terms of energy efficiency, and are roughly on par in terms
of area efficiency. We have synthesized the SweRV core in
22 nm ourselves, where it reaches 1GHz in a typical process
corner. Our extension achieves a 1.9× and 3.8× higher area
and energy efficiency, respectively. Note that SweRV does
not support FP instructions in contrast to the other cores,
which would further decrease efficiency.

5.6.4 Vector Processors

In terms of vector processors we consider Ara [21] in a 16
lane configuration and Hwacha [18] in a four lane config-
uration. The design of the RISC-V vector extension allows
the vector computation and loads/stores to run in parallel.
This is a similar benefit as with our architecture, allowing
the cores to reach a peak utilization η of 100%. Since both
processors operate on 64 bit data paths, we assume two-
way SIMD vectorization of 32 bit operations by doubling
performance and efficiencies. Our approach provides a 1.4×
and 3.2× higher energy efficiency. SSRs have a 4.9× and
3.5× lower area efficiency, respectively. The vector proces-
sors achieve this with a highly regular data path which
entails 32-way and 8-way SIMD vectorization. This comes at
a significant reduction in programmability due to the need
for special data placement and shuffling. SSRs on the other
hand have no such requirements.

More specifically, vector processors are optimized to per-
form element-wise or reduction operations on long vectors.
This is usually achieved by tightly coupling FPU lanes to
individual memory banks of the Vector Register File (VRF),
yielding excellent scaling behaviour. However this also
strictly limits which vector elements can form an operand
pair for an instruction. Many interesting problems, e.g.,
matrix multiplication, FFT, convolution, or stencils, exhibit
data reuse. In the presence of data reuse, a vector element
is paired with more than one other elements, in possibly
many different VRF banks. Leveraging this reuse in a vector
processor requires inter-bank data exchange, and is essential
to avoid additional memory accesses, which unnecessarily
push a kernel towards the memory-bound region. Such data
exchange is commonly implemented by shuffling instruc-
tions and units. In order to keep up with the FPUs, and the
likely need to shuffle before every computation in a realistic
problem, the shuffle unit must match the bandwidth of
the FPUs. Since instructions operate in a register-to-register
fashion, this doubles the bandwidth load of the VRF and
requires the vector processor to sustain simultaneous FPU
and shuffling operations.

Intuitively, a vector processor without shuffling unit is
comparable to our system (see Section 5.3) without the all-
to-all memory interconnect. In this scenario our SSR-based
cluster has a small power and area overhead of 3% to 8%
due to the interconnect. A more realistic vector processor
with shuffling unit requires additional VRF bandwidth and
all-to-all bank connectivity, leading to a power overhead of
26% to 48% compared to the equivalent SSR-based system
(see Figure 14). This does not account for additional load on
the integer core when preparing index arrays for the shuffle,
or the additional bandwidth required for the index array to
be streamed into the shuffling unit. SSRs essentially provide
a free shuffle for every data word.

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 13

Table 3
Comparison of the SSR architectural extension with other processor cores for a reduction kernel. See Section 5.6 for details.

Core Width Order Issue Peak Perf. Util. Freq. Tech. Area† Power Area Eff.† Energy Eff.
[bit] [op/cycle] Limit [MHz] [nm] [mm2] [mW] [Gop/smm2] [Gop/sW]

2x RI5CY & SSR [us] 32 in 1x 2 100% 625 22 0.243 23.6 3.20 60.4
6x RI5CY [4] 32 in 1x 6 33% 625 22 0.402 41.0 1.59 31.2
Ariane [17] 64 in 1x 2 33% 1700 22 0.239 88.1 13.4 6.37
Rocket [18] 32 in 1x 1 33% 1000 40 0.118 34.0 2.80 9.71
BOOM [19] 32 out 2x 2 50% 1200 28 0.321 118 * 3.74 10.1
SweRV [20] ‡ 32 out 2x 2 50% 1000 22 0.168 62.0 * 5.95 16.1
Ara (16 lanes) [21] 64 in 1x 32 100% 1040 22 1.99 794 15.6 41.9
Hwacha (4 lanes) [18] 64 in 1x 8 100% 1000 45 0.717 430 11.2 18.6

† Normalized to 22 nm [22] ‡ Our synthesis in 22 nm * Area-proportional estimate relative to similar core

Table 4
Peak efficiency comparison of the SSR architectural extension with

commercial processor cores. See Section 5.7 for details.

Core Tech. SIMD Area Eff. Energy Eff.
[nm] [kop/sGE] [Gop/sW]

3x RI5CY & SSR [us] 22 1 1.28 58.2
Cortex A5 [18] 40 1 1.24 12.5
Core i9-9900K [24] 14 16 1.14 26.2
Volta V100 [25] 12 32 1.32 61.2

5.7 Comparison to Commercial Processors

Another avenue to improve compute unit utilization is
explored by superscalar processors [26] as they are built
by Intel or AMD, for example. Architectural extensions to
the simple single-issue core enable multiple instructions to
operate in parallel and out of order [15], [27]. This enables
address calculation and data movement to occur in parallel
to the actual computation, ideally to an extent where the
FPU utilization reaches 100%. Here the von Neumann bot-
tleneck itself is not addressed directly, requiring significant
instruction bandwidth and hardware resources to sustain
computation. We note that all these schemes involve a sig-
nificant per FPU increase of hardware resources dedicated
to fetching and decoding of instructions, while providing
capabilities to compute addresses and perform memory
accesses in parallel. These changes come at a considerable
area and energy cost and must be further complemented by
the memory system and other parts of the core infrastruc-
ture. SSRs offer a more lightweight approach to improve
FPU utilization which directly addresses the von Neumann
bottleneck. Furthermore SSRs may have applicability within
superscalar processors as well, acting as alternative or com-
plementary approach to SIMD parallelization.

Table 4 shows a high level comparison of SSRs with
commercial processor cores considering only peak metrics.
In contrast to the open source cores in Section 5.6, detailed
micro-architectural analyses of commercial cores are not
readily available. We therefore perform our own estimates
of area and energy efficiency based on public information
on technology, die area, and area ratios evident in die
shots. The area efficiency normalized to gate equivalents is
roughly equal among all four cores. A cluster with three
SSR-enabled RI5CY cores outperforms an ARM Cortex A5
and an Intel Core i9-9900K by 4.7× and 2.2× in terms of
energy efficiency, and is roughly on par with an Nvidia Volta
V100. Note that the larger Intel and NVIDIA cores have a

significant technology-driven energy efficiency advantage.
They also require substantial SIMD/SIMT vectorization to
operate efficiently, which is not needed in our architecture.

6 RELATED WORK

6.1 Streaming Acceleration

6.1.1 NTX
The SSR extension bears similarity with the approach taken
in the “Network Training Accelerator” [8], [28]. It leverages
the regularity of nested loops and affine addressing to
operate directly on multi-dimensional data in a scratch pad
memory. NTX is designed as a co-processor tightly cou-
pled to but positioned outside of a RISC-V core, requiring
explicit operation offloading. Since it can only execute a
single fundamental operation in its innermost loop body,
kernels that consist of more than one such operation have
to be executed in multiple passes. Extending NTX to allow
for multiple operations would require significant hardware
additions: Each instruction in the loop body would require
another configuration cycle by the control processor, or an
instruction fetch unit to read instructions from memory
directly. The ability to perform different operations would
require an instruction decoding stage, local registers, and
an ALU. In essence such an extension would be akin to
developing another instruction set processor. Rather, our
architecture is a generalization of this scheme as we pull
the essential address generation and data streaming into a
RISC-V core to leverage the already existing infrastructure.
Not only does our approach boost the utilization of a RISC-
V core significantly, it does so while decreasing the number
of fetched instructions at a very small area overhead. The
seamless integration into the register file leaves the ISA
untouched, except for the addition of a single CSR.

6.1.2 Out-of-Order Processors
Wang et al. [29] have explored the applicability of stream-
based memory accesses to out-of-order processors based
on high-level architectural simulations. They conclude that
a significant fraction of loop nests in their investigated
benchmarks is amenable to representation as streams, which
supports the wide applicability of our architectural exten-
sion. We provide a more hardware-centric view and show
that stream semantics can be embedded into an existing ISA
in a very lightweight and non-invasive way. Furthermore
we find that such a streaming extension applies especially

14

well to small, single-issue, in-order cores, where it provides
much more significant speedups and energy savings than in
out-of-order cores.

6.1.3 WM Machine
Wulf et al. [30] have presented a machine architecture where
loads and stores act on FIFOs rather than directly on a
register file. The FIFOs are exposed in the ISA as a special
“register zero” (r0/f0). This is similar to our approach.
Yet it requires explicit loads/stores, address calculation, and
branching due to the lack of hardware loops, which reduces
the positive impact on tight loop performance.

6.2 Loop Acceleration
Hayenga et al. [31] have targeted loop execution on large-
scale, superscalar, out-of-order x86-style processors. The
authors modify such a processor such that loops in the
instruction stream pass through the processor frontend only
once. Instructions are then re-issued multiple times in the
backend, which is given self-iteration capabilities. The ap-
proach thus reduces frontend overheads which arise in such
large-scale processors. The loop execution and potential
to pre-execute loads is conceptually similar to SSRs. Our
proposed SSR architecture does not focus on large-scale
processors, but offers a solution across a potentially wide
range of processor sizes. In contrast to this architecture,
SSRs support nested loops and allow for loads/stores to be
completely elided. We show that the benefits are significant
especially in small-scale in-order processors.

6.3 Data Address Generator
Data address generators have been thoroughly studied in
literature [32], [33], [34], and are the subject of a wide range
of patents [35], [36], [37]. Their complexity ranges from sim-
ple pointer incrementing functionality to extensions made to
accommodate address patterns commonly found in Fourier
and discrete cosine transforms [38].

6.3.1 DSPs
Address generators are well-established in DSPs [39]. Spe-
cialized load/store instructions on designated address reg-
isters allow for pointer arithmetic to be subsumed. These
AGUs generally support a wide range of patterns, modes,
and modulo operations, which makes them costly in terms
of area and energy footprint [32]. Our work extends this by
four essential insights:

1) streaming semantics on registers allow for elision of
load/store instructions in addition to pointer arith-
metic;

2) SSRs remove the need for specialized instructions, re-
ducing the ISA impact to almost zero by allowing all
existing instructions to leverage streams and AGUs;

3) this allows for streaming operations and AGUs to be
integrated into small, energy-efficient, general-purpose
cores; and

4) a lean and efficient dedicated AGU for affine address
patterns and loop nests is sufficient to provide signif-
icant 2x to 3x gains in such cores, while leaving more
complex and irregular patterns to be handled by the

instruction stream. As we have shown many kernels
can be arranged such that their innermost hot loops
are of such a regular structure, and handling of further
complexity in the outer loops is amortized well over the
computation.

6.3.2 Superscalar Processors
Modern superscalar processors such as those built by In-
tel and AMD include multiple AGUs closely coupled to
the load/store units to perform address calculation. These
AGUs may be triggered as part of the indirection in a
memory operand as part of a CISC instruction, or by using
explicit string instructions such as REP with LODS/STOS
[40]. Our proposed SSR extension has less impact on the ISA
as it does not require additional, dedicated instructions. Pro-
visioning for explicit streaming instructions would require
a 16x replication of each instruction in a four-operand ISA
such as RISC-V, and 9x in a three-operand ISA such as x86.
Furthermore we show that it is possible to encode memory
accesses in compute instructions even in a RISC architecture,
without the need for complex operand addressing modes.

6.4 Vector Processors
6.4.1 ORCA LVE
An approach similar to ours has been proposed in the
“Lightweight Vector Extension” of the ORCA processor
[41], [42]. This LVE streams data directly from a scratch
pad memory through the ALU of a processor and stores
the result back in memory. One fundamental operation
is performed on the data as it is in flight, making the
approach similar to NTX [8]. It suffers from the same lim-
itation, requiring multiple “ping-pong” passes from and to
memory to compute more complex kernels. In its current
implementation, the LVE only supports one-dimensional
data. The SSR extension is a superset of the LVE and given
the similarity of the approaches should be comparable in
hardware complexity.

6.4.2 RISC-V “V” Extension
Other approaches to improve FPU utilization exist. Vector
processors have seen an increase in popularity recently
with new architectures such as Hwacha [18] and Ara [21]
being proposed, and vector semantics being integrated into
ISAs such as RISC-V. These processors amortize instruction
overheads by encoding identical operations on multiple
different operands in a single instruction, allowing a sin-
gle instruction to trigger hundreds of operations. Such a
scheme requires high operational and spatial regularity as
is commonly found in SIMD data paths, but in an amplified
fashion due to the increased and often dynamic vector
length. This requires powerful scatter/gather accesses into
the memory system and shuffle operations to reorganize
data within the register file, which add complexity and do
not contribute directly to the computation result. Our pro-
posed architectural allows instructions to operate directly
on the scratch pad memory at word granularity, essentially
providing a “free” shuffle operation before and after each
computation. The freedom in terms of data access patterns
provided by the data mover in our architecture allows for a
significantly more relaxed programming model, with less

SCHUIKI et al.: STREAM SEMANTIC REGISTERS 15

emphasis on data placement and no need for shuffling
instructions. In a sense, an SSR machine is a superset of a
vector machine in that instructions for the latter can readily
be translated into the former, but not vice versa.

7 CONCLUSION

In this work we have presented the “Stream Semantic
Register” ISA extension for single-issue in-order processor
cores. It introduces stream semantics on a subset of the
processor’s registers which can be enabled and disabled at
the software’s discretion via an additional CSR. This leaves
all existing instructions in the ISA virtually untouched and
allows them to leverage data streams. SSRs bring a 2× to 5×
speedup at the ISA level by allowing load/store instructions
to be elided. We have implemented the SSR extension into
RI5CY, a highly DSP-optimized RISC-V core. In this setting,
it provides a 2× to 3.7× speedup and 1.5× to 2.3× energy
efficiency gain across a wide range of data-oblivious kernels.
This comes at a modest cost of a 5% increase in critical
path delay and 11% increase in area. In a multi-core cluster
the number of cores can be reduced by 2× to 3× while
maintaining the same performance, which improves area
and energy efficiency by 2×. SSRs reduce the number of
fetched instructions by 3.5× and instruction cache power by
5.6× on realistic kernels.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement number 732631, project “OPRECOMP”.

REFERENCES

[1] M. B. Taylor, “Is dark silicon useful? Harnessing the four horsemen
of the coming dark silicon apocalypse,” in DAC Design Automation
Conference 2012. IEEE, 2012, pp. 1131–1136.

[2] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel,
“Thermal safe power (TSP): Efficient power budgeting for hetero-
geneous manycore systems in dark silicon,” IEEE Transactions on
Computers, vol. 66, no. 1, pp. 147–162, 2016.

[3] A. Waterman and K. Asanović, “The RISC-V Instruction Set Man-
ual, Volume I: User-Level ISA, Document Version 2.2,” RISC-V
Foundation, May 2017.

[4] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold
RISC-V core with DSP extensions for scalable IoT endpoint de-
vices,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[5] G. S. Sohi, “Instruction issue logic for high-performance, inter-
ruptible, multiple functional unit, pipelined computers,” IEEE
Transactions on Computers, vol. 39, no. 3, pp. 349–359, 1990.

[6] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz,
“Energy-performance tradeoffs in processor architecture and cir-
cuit design: a marginal cost analysis,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 3. ACM, 2010, pp. 26–36.

[7] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Teman,
J. Constantin, A. Burg, I. Miro-Panades, E. Beignè et al., “Energy-
efficient near-threshold parallel computing: The pulpv2 cluster,”
Ieee Micro, vol. 37, no. 5, pp. 20–31, 2017.

[8] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scal-
able near-memory architecture for training deep neural networks
on large in-memory datasets,” IEEE Transactions on Computers,
vol. 68, no. 4, pp. 484–497, 2019.

[9] F. Conti, P. D. Schiavone, and L. Benini, “XNOR Neural Engine:
A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network
Inference,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2940–2951, 2018.

[10] I. Tanasic, I. Gelado, M. Jorda, E. Ayguade, and N. Navarro, “Effi-
cient exception handling support for GPUs,” in 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2017, pp. 109–122.

[11] Cell Broadband Engine Architecture. IBM, 2007.
[12] A. Kurth, P. Vogel, A. Marongiu, and L. Benini, “Scalable and

efficient virtual memory sharing in heterogeneous SoCs with TLB
prefetching and MMU-aware DMA engine,” in 2018 IEEE 36th
International Conference on Computer Design (ICCD). IEEE, 2018,
pp. 292–300.

[13] O. Goldreich and R. Ostrovsky, “Software protection and simula-
tion on oblivious RAMs,” Journal of the ACM (JACM), vol. 43, no. 3,
pp. 431–473, 1996.

[14] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
international symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 2004,
p. 75.

[15] Western Digital, “SweRV RISC-V Core,” https://github.com/
westerndigitalcorporation/swerv_eh1, December 2018, accessed:
February 2019.

[16] F. Glaser, G. Haugou, D. Rossi, Q. Huang, and L. Benini,
“Hardware-Accelerated Energy-Efficient Synchronization and
Communication for Ultra-Low-Power Tightly Coupled Clusters,”
in Proceedings of the 2019 Design, Automation & Test in Europe
Conference & Exhibition, 2019.

[17] F. Zaruba and L. Benini, “The Cost of Application-Class Process-
ing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz
64-Bit RISC-V Core in 22-nm FDSOI Technology,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2629–2640, Nov 2019.

[18] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović,
and K. Asanović, “A 45nm 1.3 GHz 16.7 double-precision GFLOP-
S/W RISC-V processor with vector accelerators,” in ESSCIRC
2014-40th European Solid State Circuits Conference (ESSCIRC). IEEE,
2014, pp. 199–202.

[19] C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and K. Asanovic,
“BOOMv2: an open-source out-of-order RISC-V core,” in First
Workshop on Computer Architecture Research with RISC-V (CARRV),
2017.

[20] T. Marena, “RISC-V: high performance embedded SweRV™ core
microarchitecture, performance and CHIPS Alliance,” Western
Digital Corporation, April 2019.

[21] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini,
“Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor With Multiprecision Floating-Point Support in 22-nm
FD-SOI,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2019.

[22] R. Brain, “14 nm Technology Leadership,” Technology and Manu-
facturing Day, 2017.

[23] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[24] D. Schor, “Coffee Lake - Microarchitectures - Intel,” May
2019, accessed: September 2019. [Online]. Available: https:
//en.wikichip.org/wiki/intel/microarchitectures/coffee_lake

[25] NVIDIA, “Tesla V100 GPU Architecture Whitepa-
per,” August 2017, accessed: September 2019. [On-
line]. Available: https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

[26] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Elsevier, 2011.

[27] K. Asanovic, D. A. Patterson, and C. Celio, “The Berkeley Out-
of-Order Machine (BOOM): An industry-competitive, synthesiz-
able, parameterized RISC-V processor,” University of California
at Berkeley Berkeley United States, Tech. Rep., 2015.

[28] F. Schuiki, M. Schaffner, and L. Benini, “NTX: An Energy-efficient
Streaming Accelerator for Floating-point Generalized Reduction
Workloads in 22 nm FD-SOI,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 662–667.

[29] Z. Wang and T. Nowatzki, “Stream-based memory access special-
ization for general purpose processors,” in Proceedings of the 46th
International Symposium on Computer Architecture. ACM, 2019, pp.
736–749.

[30] W. A. Wulf, “The WM computer architecture,” ACM SIGARCH
Computer Architecture News, vol. 16, no. 1, pp. 70–84, 1988.

https://github.com/westerndigitalcorporation/swerv_eh1
https://github.com/westerndigitalcorporation/swerv_eh1
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

16

[31] M. Hayenga, V. R. K. Naresh, and M. H. Lipasti, “Revolver:
Processor architecture for power efficient loop execution,” in 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2014, pp. 591–602.

[32] G. Talavera, M. Jayapala, J. Carrabina, and F. Catthoor, “Address
generation optimization for embedded high-performance proces-
sors: A survey,” Journal of Signal Processing Systems, vol. 53, no. 3,
pp. 271–284, 2008.

[33] A. Sudarsanam, S. Liao, and S. Devadas, “Analysis and evaluation
of address arithmetic capabilities in custom DSP architectures,”
Design Automation for Embedded Systems, vol. 4, no. 1, pp. 5–22,
1999.

[34] M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, and H. Herranen, “A
flexible DSP core for embedded systems,” IEEE Design & Test of
Computers, vol. 14, no. 4, pp. 60–68, 1997.

[35] D. M. Pfeiffer, D. T. Stoner, J. P. Norsworthy, D. D. Dipert, J. A.
Thompson, J. A. Fontaine, and M. K. Corry, “High speed image
processing system using separate data processor and address
generator,” Jan. 15 1991, uS Patent 4,985,848.

[36] R. J. Gove, K. M. Guttag, K. Balmer, and N. K. Ing-Simmons,
“Address generator with controllable modulo power of two ad-
dressing capability,” Feb. 25 1997, uS Patent 5,606,520.

[37] S. P. Pekarich and X.-a. Wang, “Address generator for interleaving
data,” Apr. 15 2003, uS Patent 6,549,998.

[38] W. Luo and J. Xu, “Fast Fourier transform address generator,”
Feb. 13 1996, uS Patent 5,491,652.

[39] M. Ilić and M. Stojčev, “Address generation unit as accelerator
block in DSP,” in 2011 10th International Conference on Telecommuni-
cation in Modern Satellite Cable and Broadcasting Services (TELSIKS),
vol. 2. IEEE, 2011, pp. 563–566.

[40] C. H. Van Berkel and P. P. E. Meuwissen, “Address generation unit
for a processor,” Jun. 3 2008, uS Patent 7,383,419.

[41] G. Lemieux, “ORCA-LVE: Embedded RISC-V with Lightweight
Vector Extensions,” in Proceedings of the 4th RISC-V Workshop, July
2016.

[42] G. G. F. Lemieux, J. Edwards, J. Vandergriendt, A. Severance, R. D.
Iaco, A. Raouf, H. Osman, T. Watzka, and S. Singh, “TinBiNN:
Tiny Binarized Neural Network Overlay in about 5,000 4-LUTs
and 5mW,” CoRR, vol. abs/1903.06630, 2019. [Online]. Available:
http://arxiv.org/abs/1903.06630

Fabian Schuiki received the B.Sc. and M.Sc.
degree in electrical engineering from ETH
Zürich, in 2014 and 2016, respectively. He is
currently pursuing a Ph.D. degree with the Digital
Circuits and Systems group of Luca Benini. His
research interests include computer architec-
ture, transprecision computing, as well as near-
and in-memory processing.

Florian Zaruba received his BSc degree from
TU Wien in 2014 and his MSc from the Swiss
Federal Institute of Technology Zurich in 2017.
He is currently pursuing a PhD degree at the
Integrated Systems Laboratory. His research in-
terests include design of very large scale inte-
gration circuits and high performance computer
architectures.

Torsten Hoefler is a Professor of Computer Sci-
ence at ETH Zürich, Switzerland. He is also a
key member of the Message Passing Interface
(MPI) Forum where he chairs the “Collective Op-
erations and Topologies” working group. His re-
search interests revolve around the central topic
of “Performance-centric System Design” and in-
clude scalable networks, parallel programming
techniques, and performance modeling. Torsten
won best paper awards at the ACM/IEEE Su-
percomputing Conference SC10, SC13, SC14,

EuroMPI’13, HPDC’15, HPDC’16, IPDPS’15, and other conferences.
He published numerous peer-reviewed scientific conference and journal
articles and authored chapters of the MPI-2.2 and MPI-3.0 standards.
He received the Latsis prize of ETH Zurich as well as an ERC starting
grant in 2015.

Luca Benini holds the chair of digital Circuits
and systems at ETHZ and is Full Professor
at the Universita di Bologna. Dr. Benini’s re-
search interests are in energy-efficient comput-
ing systems design, from embedded to high-
performance. He has published more than 1000
peer-reviewed papers and five books. He is
a Fellow of the ACM and a member of the
Academia Europaea. He is the recipient of the
2016 IEEE CAS Mac Van Valkenburg award.

http://arxiv.org/abs/1903.06630

	1 Introduction
	2 Architecture
	2.1 Overview
	2.2 Core
	2.2.1 Register File
	2.2.2 Control and Status Registers
	2.2.3 Pipeline Considerations

	2.3 Data Mover
	2.4 Interrupts and Exceptions
	2.5 Memory System
	2.5.1 Impact of SSRs and Streams
	2.5.2 Impact of Data Movers
	2.5.3 Impact of Memory Ports

	3 Programming Model
	3.1 Pattern Configuration
	3.2 Automated Code Generation in LLVM

	4 Performance Analysis
	4.1 ISA-level Impact
	4.1.1 Setup Amortization Analysis
	4.1.2 Data Dependency Hazards

	4.2 Kernels

	5 Design and Implementation Results
	5.1 Methodology
	5.2 Single-Core Comparison
	5.2.1 Performance
	5.2.2 Critical Path
	5.2.3 Area
	5.2.4 Energy Efficiency

	5.3 Multi-Core Comparison
	5.3.1 Performance
	5.3.2 Area
	5.3.3 Energy Efficiency
	5.3.4 Instruction Pressure

	5.4 Amdahl's Law and Strong Scaling
	5.5 Automated Code Generation
	5.6 Comparison to Other Cores
	5.6.1 Peak Utilization
	5.6.2 Single-Issue Cores
	5.6.3 Multiple-Issue Cores
	5.6.4 Vector Processors

	5.7 Comparison to Commercial Processors

	6 Related Work
	6.1 Streaming Acceleration
	6.1.1 NTX
	6.1.2 Out-of-Order Processors
	6.1.3 WM Machine

	6.2 Loop Acceleration
	6.3 Data Address Generator
	6.3.1 dsp
	6.3.2 Superscalar Processors

	6.4 Vector Processors
	6.4.1 ORCA LVE
	6.4.2 RISC-V ``V'' Extension

	7 Conclusion
	References
	Biographies
	Fabian Schuiki
	Florian Zaruba
	Torsten Hoefler
	Luca Benini

