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diameter = 4

Fat tree [1]

TSUBAME2.0

DRAGONFLY, SLIM FLY

[1] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
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Cray Cascade
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DRAGONFLY, SLIM FLY

[1] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
[2] J. Kim et al. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA’08.
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Slim Fly [3] based on
the Hoffman-Singleton Graph [4]:
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> ~50% fewer routers than Fat tree
> ~30% fewer cables than Fat tree

[1] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
[2] J. Kim et al. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA’08.
[3] M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-Diameter Network Topology. SC14.
[4] A. J. Hoffman and R. R. Singleton. Moore graphs with diameter 2 and 3, IBM Journal of Research and Development. 1960.
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the Hoffman-Singleton Graph [4]:
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DRAGONFLY, SLIM FLY

> ~50% fewer routers than Fat tree
> ~30% fewer cables than Fat tree

[1] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers. 1985.
[2] J. Kim et al. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA’08.
[3] M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-Diameter Network Topology. SC14.
[4] A. J. Hoffman and R. R. Singleton. Moore graphs with diameter 2 and 3, IBM Journal of Research and Development. 1960.
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Optimize towards the Moore Bound [1]: 
the upper bound on the number of vertices
in a graph with given diameter D and radix k.

[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.
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and thus average path length:

fewer needed links / routers.

INSPIRATION: DIAMETER-2 SLIM FLY Key method

Optimize towards the Moore Bound [1]: 
the upper bound on the number of vertices
in a graph with given diameter D and radix k.

= 1 + 𝑘

= 1 + 𝑘෍

𝑖=0

𝐷−1

(𝑘 − 1)𝑖

+ 𝑘(𝑘 − 1)

+ 𝑘(𝑘 − 1)2 +⋯

𝑀𝑜𝑜𝑟𝑒𝐵𝑜𝑢𝑛𝑑(𝐷, 𝑘)

Thus, Slim Fly ensures
the lowest radix (port count)

for a given node count
and for a fixed diameter...

Sounds ideal for an on-chip setting?

[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.
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[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA’07
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SLIM FLY ON CHIP – FIRST ATTEMPT
SO HOW DOES IT FARE? Bad! 

No clear advantages
from a topology

that is close-to-optimal 
in the radix-size-diameter 

tradeoff

Why?

[1] J. Kim, W. J. Dally, D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. ISCA’07
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Near-best 
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tradeoff, 
but...

Long wire:
traversing the whole die 

requires large input buffers 
for full link utilization

Short wire: small 
input buffers
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PROBLEMS WITH SIMPLE ON-CHIP SLIM FLY, PART 2 …number of nodes/routers 
being a power of two?

…equally many cores 
on each die side?

…equally many routers 
on each die side?

…equally many router groups 
on each die side?

There are few Slim Flies
that satisfy various on-chip 
technological constraints

No need to pay attention
to all these numbers 

Various Slim Fly
configurations

Are there 
configurations with…
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Near-best 
radix-size-diameter 

tradeoff, 
but...

Long wire:
traversing the whole die 

requires large input buffers 
for full link utilization

The model must be generic
to allow for arbitrary layouts.

Different mappings 
(“sets of arrows”) 

enable different layouts

Short wire: small 
input buffers

SOLUTION: SLIM NOC
NEW COST AND AREA MODELS,
NEW LAYOUTS

Part I
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Let us see 
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What difference
do they make

for lengths of wires?

The “subgroup layout” (sn_subgr) is best for 200 nodes
The “group layout” (sn_gr) is best for 1296 nodes 
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ℱ9 = {0,1,2, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

𝑞 = 9 162 routers

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS

Addition Multiplication Inverse

Check the paper for details 
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SLIM NOC ROUTER MICROARCHITECTURE

PERFORMANCE OPTIMIZATIONS

Provide deadlock-
freedom

Drive links asynchronously 
and use repeaters

for single-cycle wires

ENHANCEMENT 3: 
CENTRAL BUFFERS [4]

Replace multi-flit input 
buffers with single-flit 

stating input buffers and 
add a central buffer

Let’s leave the details for 
the paper and just focus on 

the core aspects 
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 EDGE

NETWORK SIZE

(NODE COUNT):
 200
 1024
 1296

ROUTING

 MINIMUM STATIC

 NON-MINIMUM ADAPTIVE
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RESULTS: PERFORMANCE SMART LINKS: ON
CENTRAL BUFFERS: ON

NODE COUNT: 192/200

cm3: concentrated mesh, t2d3: torus,
pfbf3, pfbf4, fbf3: variants of Flattened Butterfly,

sn_subgr: Slim NoC (the subgroup layout)in-house simulator [1]

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS’13.
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RESULTS: PERFORMANCE SMART LINKS: ON
CENTRAL BUFFERS: ON

NODE COUNT: 192/200

Slim NoC provides the lowest latency

cm3: concentrated mesh, t2d3: torus,
pfbf3, pfbf4, fbf3: variants of Flattened Butterfly,

sn_subgr: Slim NoC (the subgroup layout)in-house simulator [1]

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS’13.
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RESULTS: AREA AND POWER CONSUMPTION
SMART LINKS: ON CENTRAL BUFFERS: ON

NODE COUNT: 192/200, TECHNOLOGY NODE: 45NM

i-routers: routers (intermediate layer), a-routers: routers (active layer),
RRg-wires: router-router wires (global layer), RNg-wires: router-node wires (global layer).

DSENT power simulator [1]

[1] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS’12.
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RESULTS: AREA AND POWER CONSUMPTION
SMART LINKS: ON CENTRAL BUFFERS: ON

NODE COUNT: 192/200, TECHNOLOGY NODE: 45NM

Slim NoC is more efficient than high-radix designs

i-routers: routers (intermediate layer), a-routers: routers (active layer),
RRg-wires: router-router wires (global layer), RNg-wires: router-node wires (global layer).

DSENT power simulator [1]

[1] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS’12.
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RESULTS: THROUGHPUT / POWER (PARSEC/SPLASH) SMART LINKS: ON
CENTRAL BUFFERS: ON

NODE COUNT: 192/200in-house simulator [1]

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS’13.
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RESULTS: THROUGHPUT / POWER (PARSEC/SPLASH) SMART LINKS: ON
CENTRAL BUFFERS: ON

NODE COUNT: 192/200

Slim NoC provides a power-performance sweetspot

in-house simulator [1]

[1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS’13.
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RESULTS: SCALABILITY

Slim NoC is similarly advantageous
when we move 

from 200 nodes to 1296 nodes
(check the paper for details )
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WHAT IS SLIM NOC?
Thank you 

for your attention

A LOW-LATENCY TOPOLOGY AN AREA- AND ENERGY-EFFICIENT TOPOLOGY

A POWER-PERFORMANCE-SWEETSPOT TOPOLOGY A HIGHLY-SCALABLE TOPOLOGY
200 nodes

1296 nodes

Website:

http://spcl.inf.ethz.ch/
Research/
Scalable_Networking/
SlimNoC
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MACIEJ BESTA, SYED MINHAJ HASSAN, SUDHAKAR YALAMANCHILI,
RACHATA AUSAVARUNGNIRUN, ONUR MUTLU, TORSTEN HOEFLER

Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability
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ANALYSIS: DIAMETER-2 SLIM FLY

 Lowest latency
 Better throughput than Dragonfly
 Almost-the-best throughput

~25-30% cost reduction
vs. second-best topology 

(Dragonfly)
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COST OF NETWORK CONSTRUCTION

~25-30% cost reduction
vs. second-best topology 

(Dragonfly)
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ANALYSIS: DIAMETER-2 SLIM FLY
PERFORMANCE (UNIFORM RANDOM)

 Lowest latency
 Better throughput than Dragonfly
 Almost-the-best throughput
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~50% fewer
intra-group 

wires

One inter-group
cable between

two groups

2(q-1) inter-group
wires between

two groups

Slim Fly: Dragonfly:

~25% fewer
routers

SLIM FLY ON CHIP – FIRST ATTEMPT
STRUCTURE INTUITION

“q”: the input parameter
that determines

the network structure. 
Formally, the base

of a finite field 
(Slim Fly uses prime q;

the corresponding field: 
{0, 1, …, q-1}.
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~50% fewer
intra-group 

wires

One inter-group
cable between

two groups

2(q-1) inter-group
wires between

two groups

Slim Fly: Dragonfly:

~25% fewer
routers

~33% higher
endpoint 
density

SLIM FLY ON CHIP – FIRST ATTEMPT
STRUCTURE INTUITION

“q”: the input parameter
that determines

the network structure. 
Formally, the base

of a finite field 
(Slim Fly uses prime q;

the corresponding field: 
{0, 1, …, q-1}.
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spcl.inf.ethz.ch

@spcl_eth

SOLUTION: SLIM NOC
NEW COST AND AREA MODELS,
NEW LAYOUTS

Let us see 
some layouts

What difference
do they make

for lengths of wires?

The “group layout” (sn_gr) is best for 1296 nodes
The “subgroup layout” (sn_subgr) is best for 200 nodes
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How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS
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arithmetic). 
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Recap: a finite field ℱ𝑞

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is prime:

= {0,1,… , 𝑞 − 1}

(with modular 
arithmetic). 

Example:

ℱ5 = {0,1,2,3,4}

𝑞 = 5

50 routers

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is non-prime:

= {𝑥0, 𝑥1, … , 𝑥𝑞−1}

...with instruction tables that define operations on the field.

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS
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Recap: a finite field ℱ𝑞

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is prime:

= {0,1,… , 𝑞 − 1}

(with modular 
arithmetic). 

Example:

ℱ5 = {0,1,2,3,4}

𝑞 = 5

50 routers

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is non-prime:

= {𝑥0, 𝑥1, … , 𝑥𝑞−1}

...with instruction tables that define operations on the field.

Example:

ℱ9 = {0,1,2, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

𝑞 = 9 162 routers

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS
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Recap: a finite field ℱ𝑞

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is prime:

= {0,1,… , 𝑞 − 1}

(with modular 
arithmetic). 

Example:

ℱ5 = {0,1,2,3,4}

𝑞 = 5

50 routers

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is non-prime:

= {𝑥0, 𝑥1, … , 𝑥𝑞−1}

...with instruction tables that define operations on the field.

Example:

ℱ9 = {0,1,2, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

𝑞 = 9 162 routers

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS

Addition
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Recap: a finite field ℱ𝑞

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is prime:

= {0,1,… , 𝑞 − 1}

(with modular 
arithmetic). 

Example:

ℱ5 = {0,1,2,3,4}

𝑞 = 5

50 routers

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is non-prime:

= {𝑥0, 𝑥1, … , 𝑥𝑞−1}

...with instruction tables that define operations on the field.

Example:

ℱ9 = {0,1,2, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

𝑞 = 9 162 routers

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS

Addition Multiplication
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Recap: a finite field ℱ𝑞

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is prime:

= {0,1,… , 𝑞 − 1}

(with modular 
arithmetic). 

Example:

ℱ5 = {0,1,2,3,4}

𝑞 = 5

50 routers

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is non-prime:

= {𝑥0, 𝑥1, … , 𝑥𝑞−1}

...with instruction tables that define operations on the field.

Example:

ℱ9 = {0,1,2, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

𝑞 = 9 162 routers

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS

Addition Multiplication Inverse
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Recap: a finite field ℱ𝑞

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is prime:

= {0,1,… , 𝑞 − 1}

(with modular 
arithmetic). 

Example:

ℱ5 = {0,1,2,3,4}

𝑞 = 5

50 routers

ℱ𝑞 = ℤ/𝑞ℤ

Assuming q is non-prime:

= {𝑥0, 𝑥1, … , 𝑥𝑞−1}

...with instruction tables that define operations on the field.

Example:

ℱ9 = {0,1,2, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

𝑞 = 9 162 routers

How to develop 
such a finite field?

SOLUTION: SLIM NOC
NON-PRIME FINITE FIELDS

Addition Multiplication Inverse

Generate with
an exhaustive search,
or use a construction 
based on polynomials
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simulator. ISPASS’13.

PERFORMANCE

 Cycle-accurate simulations (in-house simulator [1], Booksim [2])
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