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ABSTRACT

Applying machine learning techniques to the quickly growing data
in science and industry requires highly-scalable algorithms. Large
datasets are most commonly processed “data parallel” distributed
across many nodes. Each node’s contribution to the overall gradi-
ent is summed using a global allreduce. This allreduce is the single
communication and thus scalability bottleneck for most machine
learning workloads. We observe that frequently, many gradient
values are (close to) zero, leading to sparse of sparsifyable commu-
nications. To exploit this insight, we analyze, design, and implement
a set of communication-efficient protocols for sparse input data, in
conjunction with efficient machine learning algorithms which can
leverage these primitives. Our communication protocols generalize
standard collective operations, by allowing processes to contribute
arbitrary sparse input data vectors. Our generic communication li-
brary, SparCML1, extends MPI to support additional features, such
as non-blocking (asynchronous) operations and low-precision data
representations. As such, SparCML and its techniques will form
the basis of future highly-scalable machine learning frameworks.
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1 INTRODUCTION AND MOTIVATION

Machine learning workloads are quickly becoming more demand-
ing. The size of the trained models and with it the computation
required for training grow with the current exponential growth of
data availability. While small models used to train in minutes on
laptops, and image recognition networks such as AlexNet required
days on a GPU system, newer models such as BERT [17] would take
more than one year to train on a single GPU [31]. Similarly, the
sizes of the networks grow quickly from a handful of parameters
for simple regression tasks to more than 200 MB for Alexnet to up
to 340 million parameters, i.e., 11 GB with 32 bit precision, for the
largest BERT network.

The arguably standard distribution strategy in machine learning
is data parallelism, in which nodes partition the dataset, and main-
tain consistent copies of the set of model parameters computing a
global sum, either with allreduce, or through a coordinator node,
called a parameter server [35]. Here, we consider only allreduce
due to the obvious scaling limitations of a parameter server. While
it’s relatively simple to scale the number of execution nodes to the
thousands, the biggest bottleneck is the allreduce of the gradient
values at each step. The size of this reduction is equivalent to the
model size itself and it is not reduced when more nodes are used.
When scaling to large numbers of nodes, the full parameter set,
commonly hundreds of megabytes, must be summed globally every
few microseconds.

Given the large impact of communication, significant effort has
been invested into identifying scalable solutions. Virtually all major
frameworks optimize for efficient communication [1, 13, 33, 44,
57], while GPU vendors are developing specific communication
layers for this goal [40]. The research community proposed several
communication-reduction techniques, such as quantization [4, 44,
45], asynchronous communication [59], structured sparsification [2,
18, 46], or large batch methods [20, 56]. However, scaling machine
learning applications remains a complex process, requiring non-
trivial insights. In our work, we focus on a largely unexplored aspect
of scaling: how to exploit sparsity in the global summation itself. Our
techniques build on established HPC techniques such as MPI and
extend it for generic support or arbitrary sparse reductions.
Conceptual Contribution.We propose SparCML, a scalable, gen-
eral communication library for machine learning. SparCML starts
from the idea that, to reduce communication and synchronization
cost, we can exploit sparsity and relaxed consistency in machine
learning applications. In particular, individual nodes can compute
with a partially inconsistent view of the parameters. The immedi-
ate system implication, which we exploit in SparCML, is that the
updates which nodes wish to communicate are either naturally
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sparse [51], or can be sparsified in a principled manner, without loss
of convergence [2, 4, 18, 46].
Technical Contribution. Our thesis is that exploiting sparsity and
compression should be standard when scaling machine learning ap-
plications. Surprisingly, support for efficient sparse communication
or compression is currently neither available in standard commu-
nication libraries such as MPI [19], nor in specialized machine-
learning communication libraries [40]. One possible reason is the
fact that designing and implementing general sparse collective oper-
ations is non-trivial, as sparsity adds a new dimension to the already
complex system trade-offs arising when implementing collective
operations efficiently at scale [48].

We take on this challenge in SparCML. Our implementation is
efficient both in theory and in practice: for some workload param-
eters, it can be shown to be within constant factors of optimal in
terms of bandwidth and latency cost. At the same time, our im-
plementation achieves order-of-magnitude speedups versus highly
optimized dense collective implementations, or over naive sparse
implementations, both in synthetic tests and in real application
scenarios. SparCML has several additional features, such as effi-
cient support for reduced-precision collectives and for non-blocking
operations. For example, we can perform sparse reductions for gra-
dient exchange at 4 bits of precision per coordinate, overlapping
computation and communication.
Targets.Ourmain target applications are two large-scale distributed
machine learning tasks: training of state-of-the-art deep neural net-
works and large-scale regularized classification tasks. Our target
systems are multi-node computing clusters. We study two scenar-
ios: the first is supercomputing, where nodes are connected by a
high-powered, extremely well optimized network. The second sce-
nario is datacenters, where the network is relatively slower, such as
InfiniBand or Gigabit Ethernet.
Challenges. The main algorithmic contribution behind our layer
is a set of techniques for implementing collective communication
operations, such as allreduce sum, over a large number of nodes
having input vectors that are sparse. The principal difficulty for
designing and analyzing such algorithms lies in the unknown over-
lap of non-zero indices, and hence the size of the reduced result.
We provide an adaptive set of techniques which can systematically
handle all cases and their trade-offs. These algorithmic insights are
backed by careful optimizations and additional system features. An
additional challenge from the machine learning side comes with
avoiding additional hyperparameter tuning in order to leverage
sparsity—in our experiments, we find that this is possible, with a
few notable exceptions.
Experimental Results.We validate SparCML on a range of bench-
marks: 1) synthetic instances aimed to validate our analysis, 2)
academic benchmark datasets and models, and 3) large-scale de-
ployments for image classification and automated speech recogni-
tion (ASR). Synthetic benchmarks show that SparCML can bring
order-of-magnitude speedups with respect to highly-optimized
dense implementations, with limited overhead in the dense case.
We incorporate SparCML into two machine learning frameworks:
CNTK (developed by Microsoft) and MPI-OPT (developed by us).
In the supercomputing deployment, SparCML can reduce end-to-
end convergence time of a state-of-the-art network for natural

language understanding by 6×. Further, it completes a large-scale
URL classification task 31× faster than its Cray MPI-based variant,
which however does not exploit sparsity. The speedups are more
significant on less performant cloud networks.

For large-scale workloads, we investigated training CNNs on
the ImageNet dataset [43], and training the LSTM networks power-
ing the ASR component of a popular personal assistant. In the
first scenario, we found that SparCML was able to reduce the
end-to-end training time for wide residual networks [58] on Im-
ageNet by ≃ 2× on 64 GPUs, with relatively negligible accuracy
loss (< 0.5% Top5 validation), and no additional hyperparameter
tuning. However, gains were negligible when applied to the stan-
dard ResNet50 benchmark [20, 23], which has fewer parameters
and is therefore less amenable to training via sparse gradients. In
the ASR task, SparCML reduced the training time for a state-of-
the-art LSTM model on 128 GPUs by almost 10× (from 14 days
to 1.78 days), without significant accuracy loss. Our conclusion
is that SparCML can yield non-trivial speedups on a variety of
machine learning applications, and that existing frameworks can
significantly leverage sparsity and relaxed consistency guarantees.

2 PRELIMINARIES

Notation. Throughout this paper, we use the following notation
for input parameters:

Variable Description

P Number of nodes
N Problem dimension
pi Node i , 1 ≤ i ≤ P
Hi Set of non-zero indices which pi wishes to communicate
k Max number of non-zero (nnz) elements: maxi |Hi |

K Total nnz in global sum: | ∪Pi=1 Hi |

d Density of non-zero elements: k
N

2.1 Data Parallelism and Communication Costs

Data-parallelism is a standard distribution strategy for machine
learning algorithms [1, 57]: P computing nodes share a large dataset
and each maintains its own copy of the model ®xt . Model copies are
kept in sync across nodes by exchanging the model updates com-
puted locally between nodes, either via global averaging of updates,
or through a central coordinator [35]. Specifically, in Stochastic
Gradient Descent (SGD), each node i has access to (part of) the
dataset, and, in each iteration, it processes a randomly chosen set
of samples (a mini-batch), and computes a model update (gradient)
∇Fi (®xt ) locally. Nodes then globally sum these updates, and apply
them locally, resulting in the following standard SGD iteration

®xt+1 = ®xt − η
P∑
i=1
∇Fi (®xt ),

where ®xt is the value of the model at time t , η is the learning rate,
and ∇Fi is the stochastic gradient of the current model with respect
to the set of samples processed at node i .2 Since gradient updates
are averaged globally at the end of every iteration, all nodes have
a consistent version of the model. The trade-off is between the
parallelism due to the fact that we are processing P times more sam-
ples per iteration given P nodes, and the additional communication

2For simplicity, the reader may think of the model ®xt as a large array of parameters,
and of the gradients ∇Fi ( ®xt ) as array of entry-wise updates.
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Algorithm 1 SparCML Quantized TopK SGD at a node i .

Input: Stochastic Gradient ∇Fi (·) at node i
Input: value K , learning rate α
Initialize v0 = ϵi0 =

®0
for each step t ≥ 1 do
accit ← ϵit−1 + α∇Fi (vt−1) {accumulate error into a locally
generated gradient}
ϵit ← accit − TopK(acc

i
t ) {update the error}

дit ← allreduce(Q(TopK(accit )), SUM) { sum (sparse) contribu-
tion from all nodes }
vit ← vit−1 − д

i
t { apply the update }

end for

cost due to the sum reduction, necessary to maintain a consistent
model. To reduce this overhead, several communication reduction
techniques have been proposed.

2.2 Communication-Reduction Techniques

Structured Sparsification. Recent work proposes the follow-
ing communication-reduced SGD variant which we call Top-k
SGD [2, 18]: each node communicates only the k largest (by magni-
tude) components of its gradient vector ∇F (®xt ), instead of all values
in the traditional method. Usually, k is fixed to represent some per-
centage of the components, which can be even lower than 1% [37].
This forces gradient sparsity at each node, although the chosen
components may vary across nodes. The value of the components
which are not chosen is accumulated, and added to the gradient
vector of the next iteration. A precise description of this procedure
can be obtained by following Algorithm 1, where the quantization
function Q should be taken to be the identity.
Quantization. An orthogonal approach for reducing the commu-
nication cost of machine learning algorithms has been to quantize

their updates, lowering the number of bits used to represent each
value, e.g. [4, 16, 44, 52]. Mathematically, the resulting iteration can
be represented as:

®xt+1 = ®xt − η
P∑
i=1

Q(∇Fi (®xt )),

where Q : RN → RN is an element-wise quantization operator
which reduces the precision of the gradients’ data representation.
Quantization techniques can also be shown to preserve conver-
gence, as long as the quantization noise is zero-mean, but may slow
down convergence due to added variance [4].

3 COMMUNICATION-REDUCTION: A

CRITICAL VIEW

We now examine communication-reduction techniques in the con-
text of large-scale deployments characteristic to super-computing
or large-scale cloud computing.
Structured Sparsification.On the positive side, sparsification has
been proven to preserve convergence even for non-convex objec-
tives [5], and have been empirically shown, in the context of neural
network training, to be able to allow nodes to send even less than
1% of their local gradient update, without losing convergence [37].

Figure 1: The density (in percentage) of the reduced result

versus number of nodes N and per-node density k (in per-

centage) for the ResNet20 model trained on the CIFAR-10

dataset. The snapshot is taken at training epoch 5. Results

are consistent across training stages (1st, 5th, and last epoch)

and models (ResNet, DenseNet).

Unfortunately however, reaching high sparsity levels (above
99%) requires extremely careful tuning of momentum and learning
rate hyperparameters, which is error-prone and time consuming.
Employing lower sparsity levels–say, 5− 10% per node, which tends
to be more stable with respect to hyper-parameter tuning–can
negate the benefits of compression: in this case, reducing across a
large number of nodes cans cause the reduced vector to become
dense, at which point communication is again a bottleneck. We
illustrate this issue in Figure 1, where we plot the density of the
reduced gradient versus the number of nodes and the sparsity level
at each node, on a standard CNN/dataset combination.
Quantization. These techniques do not have the issue that
communication-compression is dependent of the node count: their
compression rate is fixed and independent of the number of nodes.
However, both theory and experiments suggest that quantization
can only yield a limited amount of compression (4 − 8×) before the
added variance affects end accuracy [4, 22].

4 COMMUNICATION REDUCTION IN

SparCML

In sum, the previous section suggests that neither sparsification
nor quantization is ideal in isolation, when considered at high node
counts. In this context, the SparCML framework allows the user to
leverage both quantization and sparsification methods. We provide
efficient implementations of structured sparse methods (TopK SGD)
via sparse collective operations, with non-blocking semantics, as
well as an implementation of state-of-the-art quantization meth-
ods [4]. Importantly, the implementation of the reduction method
natively supports both of these techniques to reduce communica-
tion and latency constraints.
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Sparse Quantized Reduction. We now provide a high-level algo-
rithmic description of the data-parallel SGD variant implemented
in SparCML. Please see Algorithm 1 for pseudocode. Each node i
maintains the residual error ϵi locally, which accumulates gradient
components which did not get applied. Upon each step t , this gets
added to the newly generated gradient, to obtain the accumulator
accit . This accumulator is then truncated to obtain the value дit to
be sent by node i , and the new value of the error ϵi is generated.

The allreduce call sums all the truncated gradients in a sparsity-
aware fashion. In particular, since the sum may become dense,
SparCML may quantize the resulting dense vector at an intermedi-
ate stage of the reduction, in order to reduce the bandwidth over-
head, using stochastic QSGD quantization [4]. We note that, even
though sparsification and stochastic quantization have been intro-
duced independently in the literature (see references [2, 18, 37]
and [4, 44], respectively), we are the first to employ these two
techniques in conjunction, and to prove that the resulting method
provably converges.
Convergence Proof. The following result formally states the con-
vergence guarantees of SparCML, under standard analytic assump-
tions on the objective function. The argument (provided in the
appendix) is based on the convergence proof of TopK SGD [5]; the
main source of novelty is the addition of stochastic quantization.

Theorem 4.1. Consider the SparCML SGD algorithm when min-

imising a smooth, non-convex function f . Then there exists a learning
rate schedule (αt )t=1,T such that the following holds:

min
t ∈{1,2, ...,T }

E [∥∇f (xt ) ∥
2]

T→∞
→ 0.

Discussion. The above statement is quite general in that it covers
a large class of non-convex objectives. However, it only proves
ergodic convergence to a stationary point of expected zero gradient.
This is weaker than proving convergence to a global minimum,
but is in line with state-of-the-art results for this problem setting
even without quantization, e.g. [36]. A second limitation shared by
most theoretical results is that it does not provide a precise set of
hyperparameters for practical deployments, beyond the indication
that learning rates should be diminishing.

5 SUPPORTING SPARSITY IN SparCML

5.1 Data Representation: Sparse Streams

We now describe the data types used to store sparse and dense vec-
tors, which we call sparse streams. Sparse streams allow for efficient
computation and communication of the data. Our implementation
is in C++11, and we follow this standard in our description. For
simplicity, we focus on the case where the binary operation exe-
cuted upon two or multiple streams is summation, but the same
discussion would apply for other component-wise operations.

Initially, we assume that each node is assigned a subset of non-
zero elements from a universe of size N . Let Hi denote the set of
non-zero elements given at node pi . We assume that these sets are
sparse with respect to N , i.e., that k = maxi |Hi | ≪ N . We further
denote by di the density of each set given by di = |Hi |

N and define
d = maxi di = k

N .

We define the total number of non-zero elements after having
performed the reduction as

K = | ∪Pi=1 Hi |.

For simplicity, we ignore cancellation of indices during the summa-
tion and therefore get k ≤ K ≤ min{N , P × k}.
Vector Representations. We start from the standard sparse repre-
sentation, storing a sparse vector as a sequence of non-zero indices,
together with the actual scalar values of each dimension. The stream
is stored in an array of consecutive index-value pairs. The datatype
of the values yields the number of bits needed for every non-zero
value. We either work with single or double precision floating point
values. We discuss lower precision support in Section 7.
Switching to a Dense Format. Although we are interested in
sparse problems, the size and non-zero index distribution of the
input vectors can be such that the algorithm may not benefit from
the sparse representation after some intermediate point in the sum-
mation process: as the density of the intermediate result vector
approaches the universe size N , the sparse representation becomes
wasteful.

We can model the benefits of sparsity as follows: Let isize be the
number of bytes needed to represent a non-zero input value andnnz
the number of non-zero elements. We further define c ≥

⌈
log2(N )

8

⌉
to be the number of bytes needed to store an index. Thus, the sparse
format will transmit nnz(c + isize) bytes while the dense format
transmits N × isize bytes. Our sparse representation only reduces
the communication volume if nnz ≤ δ = N×isize

(c+isize) . Yet, this volume
estimation does not capture the fact that summing sparse vectors
is computationally more expensive than summing dense vectors.
Thus, in practice, δ should be even smaller, to reflect this trade-off.

It is safe to assume that the initial nnz = k is smaller than this
threshold. However, as the summation advances and number of
nonzero elements nnz in the vector grows, the condition nnz ≤ δ
may be violated. Especially for large node counts P , K is almost
certainly larger than δ . To address this dynamic fill-in, we add an
extra value to the beginning of each vector that indicates whether
the vector is dense or sparse. In fact, when allocating memory for
vectors of dimension N , we request N × isize bytes. It is therefore
never possible to store more than δ sparse items. This threshold is
used to automatically switch the representation.
Efficient Summation. The key operation is summing up two vec-
torsu1 andu2, which could be either sparse or dense. To implement
this operation efficiently, we distinguish two cases: (1) u1 and u2’s
indices draw from any position between 1 and N , and can poten-
tially overlap and (2) u1 and u2’s index sets are disjoint. The latter
which arises if we partition the problem by dimension in which
case we can implement the sum as simple concatenation.

If input indices can overlap, we distinguish the following cases
depending on whether inputs are sparse or dense. Denote by H1
and H2 the sets containing the sparse indices of non-zero elements
for the vectors u1 and u2, respectively.

If indices are overlapping, and both vectors are sparse, we first
check whether the result might become dense. Theoretically, one
needs to calculate the size of the union of non-zero indices |H1∪H2 |.
This is costly, and thuswe only upper bound this result by |H1 |+|H2 |.
The tightness of this upper bound will depend on the underlying
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sparsity distribution, on which we make no prior assumptions. If
this value is bigger than δ , we switch to a dense representation. If
one of the inputs is dense, whereas the other is sparse, we iterate
over all the index-value pairs stored in the sparse vector and set
the value at the corresponding position in the dense vector. Finally,
if both vectors are already dense, we simply perform a (vectorized)
dense vector summation in either u1 or u2, and do not allocate a
new stream.

5.2 Efficient Collectives on Sparse Streams

We now proceed to define collective operations over a set of sparse
vectors located at the nodes. We focus on allgather and allre-
duce as defined by the MPI specification [21]. We support arbi-
trary coordinate-wise associative reduction operations for which a
neutral-element can be defined. (By neutral we mean that the ele-
ment which does not change the result of the underlying operation,
e.g., 0 for the sum operation.)
Analytical Model. We assume bidirectional, direct point-to-point
communication between the nodes, and consider the classic
Latency-Bandwidth (α-β) cost model: the cost of sending a message
of size L is T (L) = α + βL, where both α , the latency of a message
transmission, and β , the transfer time per word, are constant. L
represents the message size in words. When sending sparse items,
let βs be the transfer time per sparse index-value pair and βd < βs
the time per word.

Given this setting, the goal is to perform a collective operation
over the elements present initially at every node. That is, each node
should obtain the correct result locally, i.e., the element-wise sum
over the N dimensions in the allreduce case, while minimizing the
total communication costs, measured in the α-β model.
Assumptions. For simplicity, we will assume that each node ini-
tially has k elements: ∀i : |Hi | = k ; P is a power of 2, P > 4; and N
is divisible by P . We discuss these assumptions and relax them in
the supplementary material.

5.3 Communication Algorithms

We proceed with the composition of sparse streams into sparse
collective communication algorithms. For this, we modify two ex-
isting dense algorithms to efficiently work with sparse streams.
In an allreduce operation, each node i has a vector xi ∈ RN and
the operation computes the element-wise sum x =

∑N
i=0 xi of all

distributed vectors such that a copy of x is available at each node
after the operation.

Allreduce can be implemented in many ways, for example, the
nodes could collaborate to compute the result at a single node (re-
duce) followed by a broadcast or each node sends its xi to all nodes
(allgather). If the vector xi is dense (the traditional case), the algo-
rithms are well understood and implemented in MPI libraries [29].
However, we now explore the case where xi is sparse such that not
all elements need to be sent. We do not assume global information,
i.e., none of our algorithms requires knowledge about the amount
of data contributed by each node, nor about the distribution of
non-zero indices.

Yet, we require the user to have some rough idea about K , the
final size of the result. This is often easily observable and we will
differentiate two types of instances: In static sparse allreduce (SSAR),

K remains below δ , such that we will never switch to a dense
representation. Conversely, in dynamic sparse allreduce (DSAR)
instances, whereK ≥ δ , we will start with a sparse and switch to a
dense representation at some point during the collective operation.

If we assume that the number of non-zero indices is identical on
all nodes, we can distinguish two extreme cases: (1) none of the zero
elements overlap, i.e., Hi ∩Hj = ∅ ∀i, j and (2) all elements overlap
fully, i.e., Hi = Hj ∀i, j. The first case is the case of maximum fill-
in, at the end, x will have kP non-zero elements. If it would be
known that no elements overlap, then the sparse allreduce could be
implemented efficienlty with a simple allgather operation because
no computation is necessary. Similarly, the second case is equivalent
to a dense allreduce of size k . Any other possible distribution of non-
zero indices lies in between these two extremes. We can now bound
the communication time from above in case (1) as log2(P)α + (P −
1)kβd [10] and from below in case (2) as log2(P)α + 2

P−1
P kβd [10].

We note that the latter communication bound is only valid for
negligible computational cost.

Lemma 5.1. The time T for sparse allreduce is bounded by T ≥

log2(P)α + (P − 1)kβd if K = kP , and T ≥ log2(P)α + 2 P−1P kβd
assuming that K = k and computation for reduction is perfectly

parallelized.

In practice, allreduce implementations switch between different
implementations depending on the message size and the number of
processes [48]. We distinguish between two cases: small messages
and large messages on a moderate number of processes.

5.3.1 The Small Data Case. When the overall reduced data is small,
latency dominates the bandwidth term. In this case, we adopt a
recursive doubling technique: in the first round, nodes that are a
distance 1 apart exchange their data and perform a local sparse
stream reduction. In the second round, nodes that are a distance 2
apart exchange their reduced data. Following this pattern, in the
t-th round, nodes that are a distance 2t−1 apart exchange all the
previously reduced 2t−1k data items. This behavior is illustrated
in Figure 2. The recursive doubling technique can also be used for
solving dense allreduce and allgather problems [29].

p1 p2 p3 p4 p5 p6 p7 p8

Stage 1:
Stage 2:
Stage 3:

Figure 2: Static Sparse allreduce: Recursive doubling - In-

creasing amount of sparse data in every stage

The resulting latency for the SSAR_Recursive_double algorithm
is L1(P) = log2(P)α , as there are log2(P) stages. This is latency-
optimal and data-independent. The bandwidth term varies with the
sparsity pattern between the extremes discussed above:

L1(P) + log2(P)kβs ≤ Tssar_r ec_dbl ≤ L1(P) + (P − 1)kβs .

The lower bound is reached when the k indices fully overlap. There-
fore, at every stage, k items need to be transmitted as the intermedi-
ate results maintain constant size. The upper bound is given when
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the indices do not overlap at all. Therefore, at stage t , the number
of items transmitted is 2t−1k . Taking the sum, we get

log2(P )∑
i=1

2i−1k = k
2log2(P ) − 1

2 − 1
= k(P − 1).

5.3.2 The Large Data Case. When the data is large, dense allreduce
implementations make use of Rabenseifner’s algorithm [42], which
has two steps: The first is a Reduce-Scatter step, that partitions the
result vector across nodes, assigning a partition to each node. This
is implemented by a recursive halving technique [42]. In the second
step, the reduced answers are gathered to all other nodes by calling
a recursive doubling algorithm as described above. This two step
algorithm has a total runtime of

Tar_rab = 2 log2(P)α + 2
(P − 1)

P
kβs ,

reaching the lower bound on the bandwidth term and off by a factor
2 on the latency term.

Our sparse allreduce for large data is inspired by this dense al-
gorithm. It split the execution into two steps: a split phase and a
sparse allgather phase. In the split phase, we uniformly split the
space dimension N into P partitions and assign to each node the
indices contained in the corresponding partition. We split each
sparse vector at its node and directly send each subrange of indices
to the corresponding recipient in a sparse format. This direct com-
munication comes at a higher latency cost, which we mitigate by
using non-blocking send and receive calls. Each node then reduces
the data it received and builds the result for its partition. In the
second phase, the data has to be gathered to all other nodes with a
simple (concatenating) sparse allgather.

Obtaining runtime bounds for SSAR_Split_allgather is slightly
more involved. The split part takes time

(P − 1)α + 0βs ≤ Tsplit ≤ (P − 1)α + kβs .

Notice that both extremes imply that each node has k items for
the sparse allgather and thus K = kP . For this second step in the
algorithm to be optimal, every node must have an intermediate
result of size k

P , as we want the final result to have a size K = k
and the communication to be equally distributed.

For every node to have an intermediate result of the desired size,
we know that each node has to send at least P−1

P k items to other
nodes. Otherwise, if every node has exactly k items, we reach the
upper bound for the result size of K = k × P . So we get

L1(P) +
P − 1
P

kβs ≤ Tsparse_aд ≤ L1(P) + (P − 1)kβs .

The algorithm latency is again data-independent:

L2(P) = (P − 1)α + L1(P).

Combining these terms yields

L2(P) + 2
P − 1
P

kβs ≤ Tssar_split_aд ≤ L2(P) + Pkβs .

5.3.3 The Dynamic Case: Switching to Dense. Analysis. The dis-
cussion so far focused on the case where maintaining a sparse
representation is efficient. However, as we gather data, the size
of the result K might become larger than the sparsity-efficient
threshold δ , in which case we switch to a dense representation.

We call this the dynamic version of the problem (DSAR). The first
result regarding this case is negative: the bandwidth savings due
to sparsity are limited to a constant improvement relative to the
dense case.

Assume the final size of the reduction resultK is larger than the
threshold δ , where a sparse representation is efficient. LetK ≥ δ =
κN be the size of the final reduction, which is too large to allow
for a sparse representation (e.g. δ logN ≥ 1). The algorithm will
therefore switch to a dense representation at some point during the
reduction operation. Additionally, we want to avoid unnecessary
computation and, following [10], we assume equally distributed
optimal computation among the nodes during the reduction process.
We further know that every node has to send k elements to at least
one other node and receive at least the other δ−k items of the dense
final result. Following Chan et al. [10] we can prove the following
claim:

Lemma 5.2. Any algorithm solving the DSAR problem needs at

least time log2(P)α + δβd , where the lower bound on the bandwidth

required is at least
1
2κ that of any bandwidth-optimal fully dense

allreduce algorithm, with κ = δ
N .

Proof. The optimal latency term is identical to the fully dense
allreduce lower bound given by Chan et al. [10]. The fully dense
allreduce with k = N has a lower bound of 2 P−1P N βd on the band-
width, if computation is equally distributed. Based on the previous
assumptions, the DSAR problem has a minimum bandwidth term
of δβd , which yields the 1

2κ factor as a lower bound. □

Algorithm. Based on these insights, our solution for DSAR adapts
the previous two-stage algorithm to exploit the fact that every
reduced split will become dense. DSAR_Split_allgather hence re-
ceives the data in a sparse format from all the other nodes in the
first phase, then switches the representation and performs a dense
allgather in the second stage. Here, we can leverage existing im-
plementations, which are highly optimized to perform this second
step with dense data. Based on the known times needed by those
algorithms, which are obviously independent of the input density,
we derive the running time for our algorithm given both extremes.
The latency is again L2(P). Combined, we get

L2(P) +
P − 1
P

N βd ≤ Tdsar_split_aд

and
Tdsar_split_aд ≤ L2(P) + kβs +

P − 1
P

N βd .

Another interesting observation following Lemma 5.2 is the
fact, that by exploiting sparsity alone, and if the end-result is not
efficiently storable in a sparse format compared to the dense repre-
sentation, the achievable speedup of a sparse allreduce is at most
2
κ × (with κ = 0.5, this yield a max speedup of 4×) compared to a
fully dense algorithm. Other representation reduction techniques
are needed in order to achieve higher speedups.

6 SUPPORTING LOW-PRECISION

COMMUNICATION

In the previous sections, we showed that the bandwidth cost in
the dynamic case is lower bounded by a constant fraction of the
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bandwidth cost of a dense reduction, and we provided experimental
evidence in the corresponding section that this case is in fact likely
in large-scale deployments.

Therefore, to further reduce bandwidth cost, SparCML supports
lower-precision data representation for the outputs (2, 4, and 8 bits
per entry), using stochastic quantization as defined in the QSGD
scheme [4]. This quantization scheme provably preserves the con-
vergence of the SGD algorithm. Due to space constraints, we only
present an outline of the scheme and its implementation.

In brief, to implement QSGD quantization, each (dense) stream is
split into buckets of size B (in the order of 1024 consecutive entries)
and each bucket is quantized independently and stochastically to the
given number of quantization levels. Thus, each bucket corresponds
to B low-precision data items, e.g., 4-bit integers, packed to reduce
space and a full-precision scaling factor, which is used to provide a
scale to all the entries in the bucket. We focus on low-precision to
reduce the bandwidth cost of the dense case. In practice, we employ
the low-precision data representation only in the second part of the
DSAR_Split_allgather algorithm, where the data becomes dense.
This allows us to reduce the bandwidth cost of this last step by a
constant corresponding to the quantization.

7 ARTIFACT AND ADDITIONAL FEATURES

Interface and Code. The SparCML library provides a similar in-
terface to that of standard MPI calls, with the caveat that the
data representation is assumed to be a sparse stream. Given this,
the changes needed to port MPI-enabled code to exploit sparsity
through SparCML are minor. The library implementation consists
of around 2,000 lines of native C++11 (This does not include infras-
tructure such as benchmarks and tests which raises the line count
by an order of magnitude). Adding SparCML to CNTK required
changing around 100 lines of code.
Non-Blocking Operations. We also implement the previous algo-
rithms in a nonblocking way, similar as specified for nonblocking
collectives in MPI-3 [27, 28]. Specifically, we allow a thread to trig-
ger a collective operation, such as allreduce, in a nonblocking way.
This enables the thread to proceed with local computations while
the operation is performed in the background [26].
MPI-OPT. MPI-OPT is a framework we developed from scratch to
run distributed optimization algorithms such as SGD. It is written
in native C++11, and can link external libraries such as SparCML
and MPI for communication. MPI-OPT implements parallel stochas-
tic optimization algorithms, like gradient and coordinate descent,
on multiple compute nodes communicating via any MPI library,
with low overhead. It implements efficient distributed partitioning
of any dataset converted in the predefined format using MPI-IO,
data-parallel optimization on multiple compute nodes, with effi-
cient multi-threading inside each node, parametrized learning rate
adaptation strategies, as well as customizations to use SparCML as
the communication layer between nodes allowing for sparse, dense,
synchronous, and asynchronous aggregation.
The Microsoft Cognitive Toolkit (CNTK). For large-scale neural
network training, we modify CNTK [57] v2.0 to use SparCML as its
communication layer. CNTK is a computational platform optimized
for deep learning. The general principle behind CNTK is that neural
network operations are described by a directed computation graph,

in which leaf nodes represent input values or network parameters,
and internal nodes represent matrix operations on their children.
CNTK supports and implements most popular neural network ar-
chitectures. To train such networks, CNTK implements stochastic
gradient descent (SGD) with automatic differentiation. The CNTK
baseline supports parallelization across multiple GPUs and servers,
with efficient MPI-based communication.

8 EXPERIMENTS

Setup.We now validate SparCML on real world applications and
synthetic experiments. Open code and experimental logs are avail-
able in a public repository 3. Our experiments target two scenarios:
supercomputing and cloud computing. For the first setting, we ex-
ecute on the CSCS Piz Daint supercomputer [9], with Cray XC50
nodes, each of which has a 12 cores HT-enabled Intel Xeon E5-2690
v3 CPU with 4GB RAM and an NVIDIA Tesla P100 16GB GPU. Piz
Daint is currently the most powerful supercomputer in Europe and
has a high-performance Cray Aries interconnect with a Dragonfly
network topology. We use multiple nodes using relatively older
NVIDIA K80 GPUs connected through Gigabit Ethernet to simulate
a standard cloud deployment, but ensuring no background traf-
fic. We perform additional tests on a distinct cluster called Greina,
with CX50 nodes and an InfiniBand FDR or Gigabit Ethernet inter-
connect and on a production-grade GPU cluster, described in the
corresponding section.

In all our experiments, the baseline will be the MPI allreduce
implementation on the fully dense vectors. In general we make use
of the default Open MPI installation. On Piz Daint, we compare
against the custom Cray-MPICH installation, highly optimized by
Cray. Since our problems usually have dimension N > 65K, we fix
the datatype for storing an index to an unsigned int.

8.1 Micro-Benchmarks

We begin by validating our theoretical analysis on synthetic data,
on the Piz Daint and Greina (GigE) clusters. We vary the data di-
mension N and the data density d as well as the number of nodes
P . Based on the defined density, k indices out of N are selected
uniformly at random at each node and are assigned a random value.
We run our sparse allreduce algorithms in order to validate both cor-
rectness and the relative ordering of the derived analytical bounds.
The choice of parameters is realistic (we pick data dimensions cor-
responding to common layer sizes in neural networks).

For readability, graphs are in a log-log scale. As execution times
are non-deterministic, we conduct five experiments with newly
generated data, while running each one for ten times. Based on
those 50 resulting runtime values, we state the 25 and 75 percentage
quantiles. Results showing reduction times versus node count and
density are given in Figure 3.

Following the theoretical analysis, we expect the variant
SSAR_Recursive_double to perform best for a small amount of data,
when latency dominates over the bandwidth term. At higher node
count P , data becomes larger, which leads to less improvement of
the algorithm SSAR_Recursive_double at the same number of non-
zero entries over the other variants. Furthermore, the algorithm
SSAR_Split_allgather dominates over the DSAR_Split_allgather
3Code and experimental logs: http://gitlab.com/rengglic/sparcml

http://gitlab.com/rengglic/sparcml
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Figure 3: Reduction time versus number of nodes on Daint (N = 16M and d = 0.781%), and reduction time versus data density

on Greina (N = 16M and P = 8) for various algorithms.

variant as long as the number of non-zero indices is relatively
low compared to the overall reduced size. Both facts are visi-
ble in Figure 3, where we notice that the difference between
SSAR_Recursive_double and SSAR_Split_allgather is larger, when
increasing the number of nodes compared to increasing density.
To show the impact of the network on performance, we did run
identical tests on both Piz Daint and Greina (GigE) as in Figure 3
on the right. The relative ordering remains comparable requiring
less overall reduction time on high performance networks.

Additionally, the experiments in Figure 3 also compare our ap-
proaches against a ring-based MPI dense allreduce and its sparse
counterpart. We note that, on a fast network and relatively small
number of nodes, the ring-based algorithm is faster then any all
other algorithms, but does not give any speedup at high number
of nodes even at low density. As expected, DSAR_Split_allgather
offers improvement even at a relative large number of nodes, but
only up to a constant factor.

Name # Classes # of samples Dimension

URL [38] 2 2 396 130 3 231 961
Webspam [51] 2 350 000 16 609 143

CIFAR-10 [34] 10 60 000 32x32x3

ImageNet-1K [43] 1000 1.3M 224x224x3

ATIS [24] 128 4 978 s / 56 590 w -

Hansards [41] - 948K s / 15 657K w -

Table 1: Real World Application Datasets. s stands for sen-

tences (or pairs) and w for words.

8.2 Large-Scale Classification

We use MPI-OPT to train linear classifiers (Logistic Regression,
SVM) on large-scale classification datasets using SGD and stochas-
tic coordinate descent (SCD). The goal is to examine the runtime
improvements by just exploiting the sparsity inherently present in
the datasets and algorithms. More precisely, in these experiments,
we do not sparsify or quantize the gradient updates, but exploit the
fact that data and hence gradients tend to be sparse for these tasks.
The datasets are specified in Table 1. We examine the standard URL
and Webspam high-dimensional binary classification datasets.

For SGD, the samples have high sparsity since the features are
trigrams: while many such combinations exist, an item, e.g., a sen-
tence, can only have a very limited set of them present. This is
extremely common in text-based datasets. Since we are executing a
task having a linear dependency between model and feature vector,

this implies that the gradients themselves will be sparse. Since com-
munication is lossless, convergence is preserved and we only report
speedup of the communication and overall training time. We run
SGD with large batches (1, 000 × P ) for various combinations. The
achieved speed of MPI-OPT with the best sparse reduction algo-
rithm is reported in Table 2. (Communication speedup is reported
in brackets.)

Additionally, we run MPI-OPT’s SCD implementation, which
follows the distributed random block coordinate descent algorithm
of [53]. We focus on optimizing directly the primal problem in
order to showcase the usage of SparCML on other algorithms,
ignoring the fact that more sophisticated algorithms solving the
dual problem might exist [32]. We run the optimization on the
logistic regression loss function for the URL dataset distributed on
8 nodes of Piz Daint to achieve identical convergence compared to
SGD. Every node contributes 100 coordinates after every iteration.
As the values calculated by each node lie in different slices of the
entire model vector, we compare the runtime of an sparse allgather
from SparCML to its dense counterpart. MPI-OPT with a dense
allgather has an average epoch time of 49 seconds, with 24 seconds
dedicated to communication. The sparse allgather executes a dataset
pass (epoch) in 26 seconds on average, with 4.5 seconds spent in
the communication layer. This implies an overall speedup of factor
1.8×, due to a 5.3× speedup in communication time.
ComparisonwithApache Spark.As an exercise, we also compare
MPI-OPT with Apache Spark v1.6, which is officially supported by
CSCS [8]. Comparison is performed on the same datasets; Spark
uses its own communication layer which does not exploit sparsity.

On Piz Daint, using 8 nodes, MPI-OPT with SparCML reduces
the time to convergence on the URL dataset by 63×. This is largely
due to the reduction in communication time, which we measure
to be of 185×. Concretely, the average epoch time is reduced from
378 seconds, with 319 seconds spent for communication, to an
average of 6 seconds per epoch, whereof 1.7 seconds represent
the communication time. Compared to Spark, MPI-OPT with the
standard Cray-optimized dense allreduce has a 31× speedup to
convergence, due to a 43× speedup in communication time. An
epoch is executed in 13 seconds on average, with 8.6 seconds spent
on communication. We further investigated these speedups on an
8-node research cluster with a Gigabit Ethernet interconnect. Using
MPI-OPT, the average training time per epoch drops from 1,274
seconds (Spark) to 14 seconds (86×). On the communication part,
the time per epoch drops from 1,042 seconds to 6 seconds. The
communication time and overall speedup of a dense allreduce over
Spark’s communication layer are both of factor 12×.
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System Dataset Model # of nodes Baseline Time (s) Algorithm Algo. Time (s) Speedup

Piz Daint Webspam
LR 32 24.0 (21.6)

SSAR_Recursive_double
6.8 (3.5) 3.53 (6.17)

SVM 32 16.2 (14.2) 6.5 (4.4) 2.49 (3.23)

Piz Daint URL
LR 32 26.4 (25.8)

SSAR_Recursive_double
7.5 (7.0) 3.52 (3.69)

SVM 32 19.8 (19.3) 5.6 (5.3) 3.54 (3.64)

Piz Daint Webspam LR 8 46.7 (37.9) SSAR_Split_allgather 25.6 (15.8) 1.82 (2.40)

URL LR 8 37.7 (35.3) 20.9 (15.0) 1.80 (2.35)

Greina (IB) Webspam LR 8 65.2 (46.7) SSAR_Split_allgather 36.3 (19.0) 1.80 (2.46)

URL LR 8 81.4 (44.7) 61.1 (24.9) 1.33 (1.80)

Greina (GigE) Webspam LR 8 768.0 (759.5) SSAR_Split_allgather 37.9 (29.5) 20.26 (25.75)

URL LR 8 1045.0 (1004.6) 80.26 (42.2) 12.65 (23.81)

Table 2: Distributed optimization using MPI-OPT. The times are averages for a full dataset pass, with the communication part

in brackets. Speedup versus dense MPI is shown end-to-end, with communication speedup in brackets.

Discussion. The Spark comparison should be taken with a grain of
salt, since Spark implements additional non-trivial features, notably
fault-tolerance. However, we believe our results show conclusively
that sparsity support can provide significant savings in this large-
scale classification scenario, where sparsity is naturally present.

8.3 Training Deep Neural Networks

In this section, we examine the applicability of SparCML for dis-
tributed training of deep neural networks in CNTK, on academic
datasets. (We present results on a larger tasks in the next section.) To
exploit sparsity, we implement the Top-k SGD algorithm [2, 18, 46]
with low-precision support. The resulting protocol is provided in
Algorithm 1. We execute three types of tasks: image classification on
the CIFAR-10 dataset, natural language understanding on the ATIS
corpus andmachine translation on theHansards dataset. (See Table 1
for details.) For vision, we train the ResNet-110 architecture [23].
For natural language understanding and machine translation we
use an encoder-decoder network consisting of two LSTM [25] cells
each. We use the default hyper-parameters for single-GPU 32-bit
full accuracy convergence in all our experiments, as provided in the
open-source CNTK 2.0 repository [39]. For completeness, these pa-
rameters are provided in the Supplementary Material. For CIFAR-10
we select k = 8 and 16 entries from every bucket of 512 consecutive
elements (∼ 3% density), and stochastically quantize the values to
4-bit precision. For ATIS we select k = 2, and k = 4 for Hansards, en-
tries out of each bucket of 512 (∼ 0.4% and ∼ 0.8% density), using no
additional quantization strategy. Top-k selection and quantization
are implemented using optimized GPU kernels, and communication
is done layer-wise using non-blocking calls; this ensures that the
impact on overall computation is minimal (< 1%).

To illustrate the bandwidth reduction, we note that the LSTM
model we use for ATIS has approximately 20M parameters, which
total approximately 80 MB in full precision, which would need
to be transmitted every upon every minibatch. By contrast, the
compressed gradient received by every node in SparCML totals
less than 0.5 MB.
Accuracy & Speedup. The key metric we track is the accuracy of
the converged models. For this, we note that on image classification
(CIFAR-10), the model is able to recover virtually the same accuracy,
both in terms of training and test error versus the number of epochs.
Specifically, the end accuracy matches that of the full-precision
baseline when selecting k = 16 out of every 512 elements, and for

k = 8/512 the accuracy is 1% above the 32-bit variant as visible
in Figure 4a. For both ATIS and Hansards tasks, training and test
metrics (losses and BLEU scores) are within 1% of the full-precision
baselines, as shown for ATIS in Figure 4b.

Examining end-to-end training speedup, on the CIFAR-10 task
we achieve an overall speedup of factor 1.12× to full convergence
with 8 nodes on Piz Daint versus the full-precision baseline. Train-
ing ATIS for 20 epochs, and Hansard for 5200 iterations (as stan-
dard), we are able to reduce the overall training time on Piz Daint
by a factor 5.99× for ATIS, and 1.5× for Hansard respectively. The
variance in these speedup numbers is explained by the varying
ratios of communication and computation of the models: for the
models we employ on CIFAR-10 and Hansards, computation dom-
inates communication, whereas this ratio is inverted for ATIS, in
which case reducing communication has a much larger impact on
end-to-end training time.

8.4 Large Workload Experiments

ImageNet Experiments. Our next experiment considers the appli-
cability of our method in the context of large-scale image classifica-
tion, in particular by training ResNet architectures on the standard
ImageNet ILSVRC dataset, with 1000 target classes [43] (also known
as ImageNet-1K). This experiment was executed on CSCS Piz Daint,
using 64 compute nodes, each with a P100 GPU.

Our first target model is the classic ResNet50 architecture [23],
totalling approximately 25million parameters across 50 layers. This
model scales well when using the baseline Cray MPI implementa-
tion, as it benefits from the relatively low number of parameters,
and from the fact that per-layer gradient transmission can be over-
lapped via non-blocking calls. For this model, our results in terms of
scaling are negative: the runtime improvements due to layer sparsi-
fication to 99% sparsity are of ≃ 6% (1950 seconds per epoch versus
2071 for the Cray MPI baseline). Our profiling revealed that this
negative result is due to several factors, in particular that: (1) For
this parameter setting, gradients become dense during aggregation,
which limits our speedup. We found that enforcing higher sparsity
levels hurts model convergence, even if we implemented techniques
such as momentum correction and warm-up training [37] to allevi-
ate this issue; (2) The overhead of sparsification and densification
during TopK is non-negligible relative to the transmission cost of
ResNet50 layers; (3) Our implementation does not benefit from the
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(a) Training Accuracy for ResNet-110 Model on CIFAR-10. (b) Training Accuracy LSTM Model on ATIS Dataset.

Figure 4: Train Accuracy for Sparsified (and Quantized) Versions Vs. Full Dense SGD.

(a) Top5 Training Error. (b) Top5 Validation Error.

Figure 5: Train and Validation Error for 4×Wide ResNet for the baseline (orange) versus TopK Quantized SGD implemented

in SparCML.

(a) Accuracy versus training time numbers for 6 training passes

over the entire dataset, recording training error (CE loss). Vali-

dation results (word-error-rates) are discussed in the text.

(b) SparCML Scalability as a function of number of

GPUs

Figure 6: Production Workload Speech Experiments.

additional parameter tuning of the proprietary Cray implemen-
tation. While items (2) and (3) can be addressed with additional
implementation effort, item (1) strongly suggests that sparsifica-
tion is not a universal solution for scaling to the very large node

counts achieved by previous work for this type of CNN architec-
ture [20, 56]: since we cannot scale the sparsity linearly with the
number of nodes without hurting model convergence, gradients
naturally will become dense at high node count, which limits the
benefits of our method in this scenario.
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Our second target model class for this task is wide residual mod-
els [58]. These models are variants of ResNet architectures, where
the only difference is that the number of channels in each block is
multiplied by a constant factor. It has been empirically found that
shallow variants of wide models can achieve similar or better lev-
els of accuracy as considerably deeper architectures [58], and that
they are less sensitive to hyperparametrization, and in particular
to large-batch training [12]. Due to their increased capacity, wide
residual networks are popular when transferring to more complex
tasks, such as ImageNet-10K and 22K [15]. In particular, we focus
on training the 4xResNet18 and 4xResNet34 models (which have
4x the channels of their regular variants) on ImageNet-1K using
TopK SGD, with K = 1/512, that is, on average only the top 0.2%
of parameter values are transmitted by each node. Each P100 GPU
can only process four images in a batch, leading to a global batch
size of 512 images. We emphasize that we employ standard hyper-
parameter values for training these networks–besides theglobal
batch size of 512 which is higer due to parallelization; in particular,
our learning rate schedules are identical to the single-GPU case,
and we perform no adjustments for sparsity, such as warmup or
momentum correction.

Convergence results for 4xResNet18 are presented in Figure 5,
for both training and validation accuracy. We notice that the fi-
nal accuracy of the models differs by less than 0.9% in terms of
top-1 accuracy, and less than 0.5% in terms of top-5 accuracy. At
the same time, SparCML provides a speedup of ≃ 2× versus the
Cray MPI baseline. Upon examination, this speedup is due almost
entirely to the reduced aggregation time on the gradients on the
last fully-connected layer of the network, which totals more than
2M parameters on this wide variant. The results are similar for
4xResNet34: the speedup is of approximately ≃ 1.85× versus the
Cray MPI baseline, with accuracy difference of 0.8% in terms of
top-1 accuracy, and less than 0.4% in terms of top-5 accuracy versus
the fully-dense baseline. We note the faster loss reduction of TopK
in the earlier stages of training, whereas the improvement saturates
and inverts at the end of training. In sum, we conclude that gradient
sparsity can indeed provide non-trivial speedups for wide residual
networks, at the cost of a relatively minor decrease in accuracy,
with no additional hyperparameter tuning.
Automated Speech Recognition. The final test of our framework
is on a state-of-the-art acoustic model for automated speech recog-
nition (ASR), powering a popular digital personal assistant inside
Microsoft. The model we train is a state-of-the-art LSTM network
with attention. The model has more than 60 million parameters, 2.4
million of which reside in the attention layer.We employ Top-k SGD
for the training of the attention layer, starting from a pre-trained
LSTM network. The dataset consists of approximately 30,000 hours
(3.5 years) of annotated speech. Our cluster deployment consists of
32 server nodes, each with four NVIDIA V100 GPUs, totalling 128
GPUs. Servers have an InfiniBand interconnect, and aggregation
inside each node is performed via NVIDIA NVLink with NCCL [40].

The baseline we compare against is training on 4 nodes, 16
GPUs in total, without sparsity or quantization, but employing a
carefully-tuned instance of block-momentum SGD (BMUF) [11].
Higher node counts for this full-precision variant led to negative

scalability and, in some cases, divergence. We note that this baseline

already performs non-trivial communication reduction, since it
communicates updates less frequently between nodes with respect
to standard minibatch SGD. (Standard minibatch SGD is infeasible
on our setup due to the large model size and node count.)

We execute six passes over the entire dataset and register the
time to complete the experiment and the final accuracy. The 16
GPU BMUF baseline takes approximately 14 days to complete. This
variant increases the batch size linearly with the number of nodes
(weak scaling). We compare against our version of Top-k SGD
with SparCML, in which gradients are split into groups of 512
consecutive coordinates, out of which we select the 4 largest ones,
which we transmit from each group, saving the rest locally. We aim
to leverage the fact that, in this production setting, most updates
will occur in the parameters of the attention layer. When executing
this variant, we tuned the initial learning rate, and the batch size; in
particular, we keep a fixed global batch size of 512 samples, which
is the same as for sequential training (strong scaling).

Figure 6a presents the results in error-versus-time format, where
error is measured by standard cross-entropy (CE) loss, using our
implementation, for 32, 64, and 128 GPUs. We highlight the fact
that the sparse implementation is able to reach similar accuracy
to the full-precision baseline in a fraction of the time: at 32 nodes
(128 GPUs), we are able to reduce training time to < 1.8 days.
Figure 6b illustrates the good scalability of the method. To further
test accuracy, we also performed testing in terms of word-error-rate
(WER) for the converged models, on validation sets. We found that
the models trained with SparCML incur error rates that are less
than 1% higher than full-precision (but unscalable) training and
can sometimes improve accuracy by up to 1%. This trade-off is very
advantageous for this application scenario, as it enables much faster
model iteration times.
Hyperparameter Tuning. One important question regards the
need for additional hyperparameter tuning when using the Quan-
tized TopK algorithm. We note that, although we enforced sparse
gradients, we have recovered accuracy under standard hyperparam-
eter values even under high sparsity levels, in most cases. There
are two notable exceptions: ResNet50 training, where high spar-
sity combined with large batch sizes induced significant accuracy
loss, and the ASR experiment, where we have maintained a small
global batch size to preserve convergence. These results suggest a
non-trivial interaction between sparse gradients, batch size, and
convergence, which we aim to investigate further in future work.

9 RELATEDWORK

There has recently been a tremendous surge of interest in dis-
tributed machine learning [1, 13, 57]; see Ben-Nun and Hoefler [7]
for a survey. In the following we focus on closely related techniques.
Reduced Communication Techniques. Seide et al. [44] was
among the first to propose quantization to reduce the bandwidth
and latency costs of training deep networks. More recently, Alis-
tarh et al. [4] introduced a theoretically-justified distributed SGD
variant called Quantized SGD (QSGD), which allows the user to
trade off compression and convergence rate. We implement QSGD
as a default quantization method. Dryden et al. [18] and Aji and
Heafield [2] considered an alternative approach to communication
reduction for data-parallel SGD, sparsifying the gradient updates
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by only applying the top-k components, taken at at every node,
in every iteration, for k corresponding to < 1% of the update size.
Since then, other references [37, 46] explored this space, showing
that extremely high gradient sparsity (< 0.1%) can be supported
by convolutional and recurrent networks with preserved accuracy,
although maintaining accuracy requires hyperparameter tuning.

Our paper complements this line of the work by 1) consider-
ing stochastic quantization and sparsification in conjunction, and
proving that the resulting technique still provably converges and is
practically useful; 2) providing highly efficient sparsity and quanti-
zation support, with consistent runtime gains in large-scale settings,
both for supercomputing and cloud computing scenarios.
Lossless Methods. Factorization is a lossless compression tech-
nique [14, 54] that is effective in deep neural networks with large
fully-connected layers, but less applicable in networks with large
convolutional layers, which are quite common [23, 47]. A second
lossless method is executing extremely large batches, thus hiding
the cost of communication behind larger computation [3, 20, 55, 56].
The compression methods in SparCML are orthogonal to this direc-
tion, as they aim to reduce bandwidth cost given a fixed batch size;
as we have observed experimentally, sparsification can be applied
with little additional tuning at a fixed batch size. However, when dis-
tributing training to large node counts, batches become large, and
the aggregated gradients become dense, as we usually cannot scale
sparsity up linearly with the node count. Thus, large-batch sparse-
gradient hyperparameter tuning would become necessary in such
cases, which we leave for future work. s We note that SparCML
already implements several optimizations which are common in
the large-batch setting, such as merging gradients for adjoining
layers (“tensor fusion”), or non-blocking operations [55].
Communication Frameworks. Several frameworks have been
proposed for reducing communication cost of distributed machine
learning. One popular example is NVIDIA’s NCCL framework [40],
which significantly reduces communication cost when the nodes
are NVIDIA GPUs and the proprietary NVLINK interconnect is
available, which is not the case in multi-node settings, such as su-
percomputing. Further, NCCL currently only implements a very
restricted set of reduction operations. In addition, there is a non-
trivial number of frameworks customized to specific application
scenarios, such as the Livermore Big Artificial Neural Network
Toolkit (LBANN) [50] or S-Caffe [6]. While very efficient in spe-
cific instances, these frameworks do not usually leverage reduced-
communication techniques, or sparsity.
Sparse Reduction.Hofmann and Rünger [30] propose a simple and
effective runlength encoding approach for sparse reductions. We
significantly extend this approach in the current work, including
the observation that data might become dense during the reduction
process and that an efficient and flexible data representation must
be provided in this case. Träff [49] proposes a general approach
for implementing sparsity in MPI by ignoring neutral elements
in MPI reductions. Our sparse allreduce implementation could be
seen as a special case of this general approach, where we precisely
specify the reduction algorithms, and carefully analyze the perfor-
mance bounds for small and large message scenarios. In addition,
SparCMLmakes several additional contributions which are specific

to machine learning applications, such as efficient low-precision
support and integration with machine learning frameworks.

Kylix [60] considers sparse many-to-many reductions in the
context of computation over large scale distributed graph data on
community clusters. However, Kylix assumes knowledge of the
data distribution and performs multiple passes over the reduction,
which make it not applicable to our scenario. Dryden et al. [18]
implement a sparse variant of the classical allreduce algorithm via
a pairwise reduce-scatter followed by a ring-based allgather. The
amount of data is kept constant at every stage of their algorithm
by re-selecting the top k values and postponing the other received
values.We note that this ability to preserve a local residual is specific
to Top-k SGD and that our framework is more general. In terms of
performance, their implementation will provide similar results to
our SSAR_Split_allgather algorithm.

10 CONCLUSIONS AND FURTHERWORK

We have described and analyzed SparCML, a high-performance
communication framework that allows the user to leverage sparse
and low-precision communication in the context of machine learn-
ing algorithms. SparCML integrates easily into existing computa-
tional frameworks and can provide order-of-magnitude speedups
in several real-world applications. In future work, we aim to further
investigate other distributed machine learning applications which
can benefit from sparsity, and to further investigate the interac-
tion between sparsity and other parallelization approaches, such as
large-batch training. We believe that the simple but effective spar-
sity schemes we described can play a significant role in reducing
communication cost in future machine learning systems.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Datasets and Tasks: We validate SparCML on real world applica-
tions and synthetic experiments. The real world applications are: -
Training of linear classifiers (Logistic Regression, SVM) on standard
URL and Webspam high-dimensional binary classification datasets
- Training of ResNet-110 for image classicifation on CIFAR-10 -
Training of a two cell LSTM for natural language understanding
(on ATIS dataset) and machine translation (Hansards dataset) -
Training of state-of-the-art LSTM network with attention repre-
senting an acoustic model for automated speech recognition (ASR).
The proprietary dataset consists of approximately 30,000 hours (3.5
years) of annotated speech.

— Code: Complete code and experimental logs are available in a
public repository and further described in the paper.

— Hardware, OS, and compiler details: We execute our experi-
ment on the CSCS Piz Daint supercomputer, with Cray XC50 nodes,
each of which has a 12 cores HT-enabled Intel Xeon E5-2690 v3 CPU
with 4GB RAM and an NVIDIA Tesla P100 16GB GPU. Piz Daint
has a high-performance Cray Aries interconnect with a Dragonfly
network topology. We use multiple nodes using relatively older
NVIDIA K80 GPUs connected through Gigabit Ethernet to simulate
a standard cloud deployment, but ensuring no background traffic.
The code is compiled using GCC 6.2.0 provided by Cray.

We perform additional tests on a cluster called Greina, with CX50
nodes and an InfiniBand FDR or Gigabit Ethernet interconnect
and on a production-grade GPU cluster consisting of 32 server
nodes, each with four NVIDIA V100 GPUs, totalling 128 GPUs.
Aggregation inside each node of this specific cluster is performed
via NVIDIA NCCL. We make use of the compiler GCC 5.4.0.

In all our experiments, the baseline is the default MPI allreduce
implementation on the fully dense vectors. We make use of the
default Open MPI 4.0 installation in general. On Piz Daint, we com-
pare against the custom Cray-MPICH installation, highly optimized
by Cray.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

List of URLs and/or DOIs where artifacts are available:

Public repository with non-proprietary artifacts
regarding code and generated logs available:
https://gitlab.com/rengglic/SparCML

↪→

↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Paper Modifications: See Artifact Description and details in the
paper.
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