System Resilience
Amplify Failures, Detect,
or Both?

(AROSS19 Invited Talk)

Arnab Das, Ian Briggs, Mark Baranowski, Vishal Sharma

Zvonimir Rakamaric, Sriram Krishnamoorthy, Ganesh Gopalakrishnan
University of Utah, School of Computing (plus PNNL, Microsoft)

http://www.cs.utah.edu/~ganesh
http://www.parallelL.utah.edu

http://www.cs.utah.edu/~ganesh
http://www.parallel.utah.edu

System Resilience: Need

TOWARD EXASCALE RESILIENCE

Franck Cappelio’
Al Geist?

Bill Gropp®
Laxmikant Kale®
Bill Kramer*

=3
Marc Snir

Abstract

Over the past few years resilience has became a major
issue for high-performance computing (HPC) systems, in
particular in the perspective of large petascale systems
and future exascale systems. These systems will typically
gather from half a million to several millions of central
processing unit (CPU) cores running up to a billion threads.
From the current knowledge and observations of existing
large systems, it is anticipated that exascale systems will
experience various kind of faults many times per day. It is
also anticipated that the current approach for resilience,
which relies on automatic or application level checkpoint/
restart, will not work because the time for checkpointing
and restarting will exceed the mean time to failure of a full
system. This set of projections leaves the community of

Soft-error
resilience of the
IBM POWERG6
Processor

The error detection and correction capability of the IBM
POWERG6™ processor enables high tolerance to single-event
upsets. The soft-error resilience was tested with proton beam- and
neutron beam-induced fault injection. Additionally, statistical fault
injection was performed on a hardware-emulated POWERG6
processor simulation model. The error resiliency is described in
terms of the proportion of latch upset events that result in vanished
errors, corrected errors, ('/lc’('/\'.\'lup.\', and incorrect architected
states.

P. N. Sanda

J. W. Kellington
P. Kudva

R. Kalla

R. B. McBeth
J. Ackaret

R. Lockwood
J. Schumann
C. R. Jones

System Resilience: Need

POWERG test system mounted in beamline.

Machine derating

a) Vanished

b) Corrected Application derating

1) Errors not
impacting
application

¢) Checkstops

d) Incorrect
architected 2) Software detected

state . -
3) Silent data corruption

Taxonomy of derating terms.

System Resilience: Need

ORNL/TM-2016/687

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale
ORNL Technical Report - Version 1.0

10 Case Study: Proactive Process Migration

Hardware

Management

Health Monitor

Application Code

Scientific Domain Specific Libraries ' Debugging

Profiling
Libraries,
Runtimes

’ Job ‘
_ Scheduler _

Numerical Libraries
Live Migration
l_‘

Operating System

<pId> ssa@20id

Monitoring

File System Framework

Process-level
Containment

DRAM NVLink + IB

GPU or
Accelerator

Local Storage
& SAN

x86 or

NVRAM
OpenPower \

Board-level Thermal Sensors

Figure 7: Resilience Solution Case Study: Process Migration

System Resilience: Want

Speaker: Moin Qureshi, Georgia Tech SELSE 2019

On Exploiting the Synergy Between Reliability
and Security

Building trusted computing systems requires that the system is both reliable (protected against naturally occurring failures)
and secure (protected against adversarial access patterns). Both reliability and security often share the same fate in that
everyone wants them but no one likes to pay for them. Therefore, the path forward for practical adoption of solutions for
reliability and security is to develop ultra low-cost solutions. O “r the last decade, there has been a wider understanding in

System Resilience: Plausible Reasons for Lack of Adoption

No continued investment (in many cases)

Community unprepared to stomach costs
o New fault models -> accepted!
o What to do after detection -> accepted!
o Papers on detection itself often rejected
m asindicated by rejection (plus the stated reasons)

e Nobody wants 30% overhead
o “Why not go back to earlier lithography?”

e Other problems that make it worse:
o Lack of guarantees on detection
o High false positive rates
m Unacceptable, given that bit-flips themselves are rare!

Path Forward

e Ultra-low costs
e Ultra-tight guarantees

This talk

e Approach to detect with rigorous guarantees
o Focus on specific domains
m Stencil codes
o Offer rigorous guarantees and reasonable overheads
m Our approach: FPDetect

This talk

e Approach to detect with rigorous guarantees
o Focus on specific domains
m Stencil codes
o Offer rigorous guarantees and reasonable overheads
m Our approach: FPDetect

e Approach to amplify failures
o To manifest them more

o Leads to cheaper detection
m Our approach: FailAmp

This talk

e Approach to detect with rigorous guarantees
o Focus on specific domains
m Stencil codes
o Offer rigorous guarantees and reasonable overheads
m Our approach: FPDetect

e Approach to amplify failures
o To manifest them more
o Leads to cheaper detection
m Our approach: FailAmp

m Capitalize on custom fault models to obtain lower overheads
e Concluding Remarks:

o How to ensure that the area stays viable?

FPDetect

e Stencil codes are a good target for protection
o Higher computational intensity
o SDCs can build up
m based on the nature of the PDEs being solved
e Problem with putting assertions around data

o Don’t know exact invariants
o0 Machine-learned models tried — too imprecise
m Weaker invariants will trigger false alarms

e Obvious insight

o There is an ever-present invariant
m A duplicated computation!

FPDetect

e Doing duplication naively is unwise
o Too much overhead

e Our (rather unusual) approach
o Find what the value will be T steps later!

FPDetect

e Doing duplication naively is unwise
o Too much overhead

e Our (rather unusual) approach
o Find what the value will be T steps later!

FPDetect Approach (higher level)

e Find out what the value will be T steps later
e Guarantee b bits of mantissa exactly

o If at runtime we observe b bits not being preserved, then....
m Conclude that a bit-flip occurred!

FPDetect Approach

PEREES

X-6

Fig. 1. Simplified 1D stencil over 6 time steps

FPDetect Optimization

Compute per
Binade-difference group
And have it in a table
For lookup

Fig. 2. Illustration of path dominance

FPDBtB Ct D Bte CtOf StaCkl ﬂg (shows spatial stacking, temporal stacking, and coverage “holes”)

protected array elements

Fig. 6. Detector arrangement for a 1-d stencil. Horizontal: array elements;
vertical: time steps

FailAmp

e “Make a bad problem worse”

o So it can be observed more readily!

FailAmp: Make a transient address “blip” permanent

= = N N
S u o u
o O o o

L
[/}
n

b=

o
0
0
[
S

T

©

<

(%]
o O

13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Loop Count

1 2 3 4 5 6 7 8 9 10 11 12
Loop Count

=E=fool_addr (address offset) =#=fool_addr_corrupt (address offset) =l=f002_addr (address offset) =#=f002_addr_corrupt (address offset)

FailAmp protects AGUs (images from Wikipedia below)

L1 instruction cache IFn:IZ:C“D" Bmg:mn (incl. 2 cores)

x
octuple associative Data Cache 32 KByte,
64-entry TLB4K, 32-entry TLB-2/4M

GTls: gigatransfers per second

Intel's Nehalem microarchitecture contains multiple AGUs behind the 7
CPU's reservation station.

64KkB two-way
328

Predecode/Pick

- - -
Instruction decoder

EAES EAES [EAES
Decode | Pal Decode | Path Decode | Path
Format |} |[Format [Format |f|[Format | Format
Decode | Decode Decode | Decode Decode | Decode

Resource
Monitor

Module block

EAEN
Decode | Path
Format | Format
Decode | Decode

L1 data cache L1 data cache
16kB four-wa Write Coalescing Cache 16 kB four-wa,

Core Interface Unit

L2 Data Cache
2048kB (shared Max)

FailAmp in a nutshell

e An LLVM transformation

o Rewrite the Get Element Pointer instructions pertaining to array accesses
o Flow relativized addresses via new Phi-nodes
o Put detectors as frugally as possible

e Itisa “whole function relativization”

o Existing compilers often do for one loop
o They don’t connect-up relativization chains

FailAmp rewrites GEP instructions

GEPs are GEP Example*

struct RT {

e “One stop int A;
int B[10][20];

shopping” for int ¢;

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

} 2. Compute the index of the 1% element by
Arrays Of struct ST { adding size_ty(%ST).
struct RT X;
StruCtS Of int Y; 3. Compute the index of the 2 field by
struct RT Z; adding size_ty(%RT) +
Arrays } size_ty(i32) to skip past X and Y.

int *foo(struct ST *s
return &s[l]%

e Also handles }
vectorization

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

$RT type { i32, [10 x [20 x i32]], i32 }

$ST type { %RT, i32, %RT }

define i32* @foo(%ST* %s) {

entry:
%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* Sarrayidx

Final answer: ADDR + size ty(%ST) + size ty(%RT) + size ty(i32)
+ size_ty(i32) + 5*20*size_ty(i32) + 13*size ty(i32)

© *adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

FailAmp rules, and a generic example

pm[A] =0, Pm[el] = di]

e .3 €4 e
€2 = g(ela il): €4 = 9(629 i3): . 4 2 5
- d;, = pmle;] + i — dig = pmlez] + i3

- Ay =d;, — d;, - Ay =d;, —d, -
= Te, = g(re,s A2) = Tey = g(re;, Ag) i

- pmle;, « d;,| - ng[EZ’;—) d;,] d '
€3 = g(eg, ig): €5 = 4): | . 2 |
Cd = pmle]+i, - ds=pmlAl+is = N
—A3:di3_di2 _A5=d,'5—d,~4 A A \}Lv
= Tey = g(re,, Az) = Te; = g(re,, As) L
- pm[ei3 — di3] - pm[eiS — dis]

|

Fig. 2. FailAmp lllustration

FailAmp Compilation Rule (general case)

(pm, %e’ = g(%e,%i);, P, %r, %d, R)
—

(pm+ = (%r’',%d’), P, %r', %d’, R; NewCode)

where, There are
Special cases

NewCode = Where the

Generated code

%d’ = add(pm|%el, %1); Can be simplified

%A\ = sub(%d’, %d);
%r’ = g(%r, %N\)
assert(%A + %d’ == %r’)
Fig. 3. Formal Transformation in FailAmp

FailAmp Coverage Results

FailAmp highlights

e Found mistake in initial rules

o Formal verification using SMACK caught mistake

e Now FailAmp catches 100% of all injected address faults

o Injections done AFTER compiler optimizations (various)
o This is CRUCIAL to manifest many GEP sequences

e ARM has single instruction that fuses key FailAmp steps

o Post-indexed addressing
m Effective Address calculated replaces base address
m X86 needs 2 instructions (calculate Eff. Addr and load as new base; ARM takes one)

e Preliminary results on LULESH for FailAmp on a 96 x 96 x 96 cube

o 5% overhead
o 100% detection of address faults
o No False Positives!

FailAmp Overhead Results

Overhead x86_64 Single Data Layout Overhead ARM Single Data Layout

Overhead Input Size

Concluding Remarks

e We presented FPDetect and FailAMP — two complementary approaches for
system resilience
e Both are usable in a context that uses polyhedral optimizations
® Measured effective before/after PLUTO transformations
e FPDetect also helps detect logical bugs
e Would be interesting to develop interesting mixes of amplification + detection
o E.g, even FPDetect + FailAmp makes sense..

e Cross-layer resilience schemes are essential to curb overheads and localize faults

e Must view resilience as “End of Moore Insurance”

o Tight-rope walk at End of Moore
o Good detectors catch falls and helps us recover

Extra: Intel vs ARM

x86 (Intel syntax):

ebx = current relative pointer
esi = calculated delta index
4 = size of array item

edx = where data will be loaded into

calculate new relative pointer
lea ebx, [esi*4 + ebx]
; load pointer

mov edx, ebx

ARM:
R2 = current relative pointer
R3 = just calculated delta index
= shift applied to delta index (same as mul by 4)

where data will be loaded into

calculate new relative pointer, load value, and replace R2

ldr R1, R2, R3, LSL 2

with new relative pointer

Extra: Intel vs ARM

In x86 the normal way to access memory would be:

mov edx, [esi*d4 + ebx]

Which would calculate the pointer and load it, but the [esi*4 + ebx] is never placed in a register.
LEA was made to do this calculation and keep the result in a register so that the load can occur later.

ARM was made with the intention of modifying a pointer on access, so we get the new pointer without having to "split' instructions.

