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Abstract

Over the past few years resilience has became a major
issue for high-performance computing (HPC) systems, in
particular in the perspective of large petascale systems
and future exascale systems. These systems will typically
gather from half a million to several millions of central
processing unit (CPU) cores running up to a billion threads.
From the current knowledge and observations of existing
large systems, it is anticipated that exascale systems will
experience various kind of faults many times per day. It is
also anticipated that the current approach for resilience,
which relies on automatic or application level checkpoint/
restart, will not work because the time for checkpointing
and restarting will exceed the mean time to failure of a full
system. This set of projections leaves the community of
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The error detection and correction capability of the IBM
POWERG6™ processor enables high tolerance to single-event
upsets. The soft-error resilience was tested with proton beam- and
neutron beam-induced fault injection. Additionally, statistical fault
injection was performed on a hardware-emulated POWERG6
processor simulation model. The error resiliency is described in
terms of the proportion of latch upset events that result in vanished
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states.
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POWERG test system mounted in beamline.
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Taxonomy of derating terms.
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10 Case Study: Proactive Process Migration
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Speaker: Moin Qureshi, Georgia Tech SELSE 2019

On Exploiting the Synergy Between Reliability
and Security

Building trusted computing systems requires that the system is both reliable (protected against naturally occurring failures)
and secure (protected against adversarial access patterns). Both reliability and security often share the same fate in that
everyone wants them but no one likes to pay for them. Therefore, the path forward for practical adoption of solutions for
reliability and security is to develop ultra low-cost solutions. O “r the last decade, there has been a wider understanding in




System Resilience: Plausible Reasons for Lack of Adoption

No continued investment (in many cases)

Community unprepared to stomach costs
o New fault models -> accepted!
o What to do after detection -> accepted!
o  Papers on detection itself often rejected
m asindicated by rejection (plus the stated reasons)

e Nobody wants 30% overhead
o “Why not go back to earlier lithography?”

e Other problems that make it worse:
o Lack of guarantees on detection
o High false positive rates
m  Unacceptable, given that bit-flips themselves are rare!



Path Forward

e Ultra-low costs
e Ultra-tight guarantees
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e Approach to detect with rigorous guarantees
o  Focus on specific domains
m  Stencil codes
o  Offer rigorous guarantees and reasonable overheads
m  Our approach: FPDetect
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This talk

e Approach to detect with rigorous guarantees
o  Focus on specific domains
m  Stencil codes
o  Offer rigorous guarantees and reasonable overheads
m  Our approach: FPDetect

e Approach to amplify failures
o To manifest them more
o Leads to cheaper detection
m  Our approach: FailAmp

m Capitalize on custom fault models to obtain lower overheads
e Concluding Remarks:

o How to ensure that the area stays viable?



FPDetect

e Stencil codes are a good target for protection
o Higher computational intensity
o SDCs can build up
m  based on the nature of the PDEs being solved
e Problem with putting assertions around data

o  Don’t know exact invariants
o0  Machine-learned models tried — too imprecise
m  Weaker invariants will trigger false alarms

e Obvious insight

o There is an ever-present invariant
m A duplicated computation!



FPDetect

e Doing duplication naively is unwise
o Too much overhead

e Our (rather unusual) approach
o  Find what the value will be T steps later!
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FPDetect Approach (higher level)

e Find out what the value will be T steps later
e Guarantee b bits of mantissa exactly

o If at runtime we observe b bits not being preserved, then....
m  Conclude that a bit-flip occurred!



FPDetect Approach
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Fig. 1. Simplified 1D stencil over 6 time steps




FPDetect Optimization

Compute per
Binade-difference group
And have it in a table
For lookup

Fig. 2. Illustration of path dominance




FPDBtB Ct D Bte CtOf StaCkl ﬂg (shows spatial stacking, temporal stacking, and coverage “holes”)

protected array elements

Fig. 6. Detector arrangement for a 1-d stencil. Horizontal: array elements;
vertical: time steps




FailAmp

e “Make a bad problem worse”

o  So it can be observed more readily!



FailAmp: Make a transient address “blip” permanent
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FailAmp protects AGUs (images from Wikipedia below)

L1 instruction cache IFn:IZ:C“D" Bmg:mn (incl. 2 cores)

x
octuple associative Data Cache 32 KByte,
64-entry TLB4K, 32-entry TLB-2/4M

GTls: gigatransfers per second

Intel's Nehalem microarchitecture contains multiple AGUs behind the 7
CPU's reservation station.
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FailAmp in a nutshell

e An LLVM transformation

o  Rewrite the Get Element Pointer instructions pertaining to array accesses
o  Flow relativized addresses via new Phi-nodes
o Put detectors as frugally as possible

e Itisa “whole function relativization”

o Existing compilers often do for one loop
o They don’t connect-up relativization chains



FailAmp rewrites GEP instructions

GEPs are GEP Example*

struct RT {

e “One stop int A;
int B[10][20];

shopping” for int ¢;

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

} 2. Compute the index of the 1% element by
Arrays Of struct ST { adding size_ty(%ST).
struct RT X;
StruCtS Of int Y; 3. Compute the index of the 2 field by
struct RT Z; adding size_ty(%RT) +
Arrays } size_ty(i32) to skip past X and Y.

int *foo(struct ST *s
return &s[l]%

e Also handles }
vectorization

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

$RT type { i32, [10 x [20 x i32]], i32 }

$ST type { %RT, i32, %RT }

define i32* @foo(%ST* %s) {

entry:
%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* Sarrayidx

Final answer: ADDR + size ty(%ST) + size ty(%RT) + size ty(i32)
+ size_ty(i32) + 5*20*size_ty(i32) + 13*size ty(i32)

© *adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction




FailAmp rules, and a generic example
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Fig. 2. FailAmp lllustration




FailAmp Compilation Rule (general case)

(pm, %e’ = g(%e,%i);, P, %r, %d, R)
—

(pm+ = (%r’',%d’), P, %r', %d’, R; NewCode)

where, There are
Special cases

NewCode = Where the

Generated code

%d’ = add(pm|%el, %1); Can be simplified

%A\ = sub(%d’, %d);
%r’ = g(%r, %N\)
assert(%A + %d’ == %r’)
Fig. 3. Formal Transformation in FailAmp




FailAmp Coverage Results




FailAmp highlights

e Found mistake in initial rules

o  Formal verification using SMACK caught mistake

e Now FailAmp catches 100% of all injected address faults

o Injections done AFTER compiler optimizations (various)
o This is CRUCIAL to manifest many GEP sequences

e ARM has single instruction that fuses key FailAmp steps

o Post-indexed addressing
m Effective Address calculated replaces base address
m X86 needs 2 instructions (calculate Eff. Addr and load as new base; ARM takes one)

e Preliminary results on LULESH for FailAmp on a 96 x 96 x 96 cube

o 5% overhead
o 100% detection of address faults
o No False Positives!



FailAmp Overhead Results

Overhead x86_64 Single Data Layout Overhead ARM Single Data Layout

Overhead Input Size




Concluding Remarks

e We presented FPDetect and FailAMP — two complementary approaches for
system resilience
e Both are usable in a context that uses polyhedral optimizations
® Measured effective before/after PLUTO transformations
e FPDetect also helps detect logical bugs
e Would be interesting to develop interesting mixes of amplification + detection
o E.g, even FPDetect + FailAmp makes sense..

e Cross-layer resilience schemes are essential to curb overheads and localize faults

e Must view resilience as “End of Moore Insurance”

o Tight-rope walk at End of Moore
o Good detectors catch falls and helps us recover



Extra: Intel vs ARM

x86 (Intel syntax):

ebx = current relative pointer
esi = calculated delta index
4 = size of array item

edx = where data will be loaded into

calculate new relative pointer
lea ebx, [esi*4 + ebx]
; load pointer

mov edx, ebx

ARM:
R2 = current relative pointer
R3 = just calculated delta index
= shift applied to delta index (same as mul by 4)

where data will be loaded into

calculate new relative pointer, load value, and replace R2

ldr R1, R2, R3, LSL 2

with new relative pointer




Extra: Intel vs ARM

In x86 the normal way to access memory would be:

mov edx, [esi*d4 + ebx]

Which would calculate the pointer and load it, but the [esi*4 + ebx] is never placed in a register.
LEA was made to do this calculation and keep the result in a register so that the load can occur later.

ARM was made with the intention of modifying a pointer on access, so we get the new pointer without having to "split' instructions.




