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System Resilience: Plausible Reasons for Lack of Adoption
● No continued investment (in many cases)

● Community unprepared to stomach costs

○ New fault models -> accepted!

○ What to do after detection -> accepted!

○ Papers on detection itself often rejected

■ as indicated by rejection (plus the stated reasons)

● Nobody wants 30% overhead 

○ “Why not go back to earlier lithography?”

● Other problems that make it worse:

○ Lack of guarantees on detection

○ High false positive rates

■ Unacceptable, given that bit-flips themselves are rare!



Path Forward 
● Ultra-low costs

● Ultra-tight guarantees 



This talk
● Approach to detect with rigorous guarantees

○ Focus on specific domains

■ Stencil codes

○ Offer rigorous guarantees and reasonable overheads

■ Our approach: FPDetect

● Approach to amplify failures

○ To manifest them more

○ Leads to cheaper detection

○ FailAmp
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This talk
● Approach to detect with rigorous guarantees

○ Focus on specific domains

■ Stencil codes

○ Offer rigorous guarantees and reasonable overheads

■ Our approach: FPDetect

● Approach to amplify failures

○ To manifest them more

○ Leads to cheaper detection

■ Our approach: FailAmp

■ Capitalize on custom fault models to obtain lower overheads

● Concluding Remarks:

○ How to ensure that the area stays viable?



FPDetect
● Stencil codes are a good target for protection

○ Higher computational intensity

○ SDCs can build up

■ based on the nature of the PDEs being solved

● Problem with putting assertions around data

○ Don’t know exact invariants

○ Machine-learned models tried → too imprecise

■ Weaker invariants will trigger false alarms

● Obvious insight

○ There is an ever-present invariant

■ A duplicated computation!



FPDetect
● Doing duplication naively is unwise

○ Too much overhead

● Our (rather unusual) approach

○ Find what the value will be T steps later!
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FPDetect Approach (higher level)
● Find out what the value will be T steps later

● Guarantee b bits of mantissa exactly

○ If at runtime we observe b bits not being preserved, then…. 

■ Conclude that a bit-flip occurred!



FPDetect Approach 



FPDetect Optimization 
Compute per
Binade-difference group
And have it in a table
For lookup



FPDetect Detector Stacking (shows spatial stacking, temporal stacking, and coverage “holes”)



FailAmp
● “Make a bad problem worse”

○ So it can be observed more readily!



FailAmp: Make a transient address “blip” permanent



FailAmp protects AGUs (images from Wikipedia below)



FailAmp in a nutshell
● An LLVM transformation

○ Rewrite the Get Element Pointer instructions pertaining to array accesses

○ Flow relativized addresses via new Phi-nodes

○ Put detectors as frugally as possible

● It is a “whole function relativization”

○ Existing compilers often do for one loop

○ They don’t connect-up relativization chains



FailAmp rewrites GEP instructions 
GEPs are 

● “One stop 

shopping” for 

Arrays of 

Structs of 

Arrays

● Also handles 

vectorization



FailAmp rules, and a generic example 



FailAmp Compilation Rule (general case)

There are 

Special cases 

Where the 

Generated code

Can be simplified



FailAmp Coverage Results



FailAmp highlights
● Found mistake in initial rules

○ Formal verification using SMACK caught mistake 

● Now FailAmp catches 100% of all injected address faults

○ Injections done AFTER compiler optimizations (various)

○ This is CRUCIAL to manifest many GEP sequences

● ARM has single instruction that fuses key FailAmp steps

○ Post-indexed addressing

■ Effective Address calculated replaces base address

■ X86 needs 2 instructions (calculate Eff. Addr and load as new base; ARM takes one)

● Preliminary results on LULESH for FailAmp on a 96 x 96 x 96 cube

○ 5% overhead

○ 100% detection of address faults

○ No False Positives!



FailAmp Overhead Results



Concluding Remarks
● We presented FPDetect and FailAMP – two complementary approaches for 

system resilience

● Both are usable in a context that uses polyhedral optimizations

● Measured effective before/after PLUTO transformations

● FPDetect also helps detect logical bugs

● Would be interesting to develop interesting mixes of amplification + detection

○ E.g., even FPDetect + FailAmp makes sense...

● Cross-layer resilience schemes are essential to curb overheads and localize faults

● Must view resilience as “End of Moore Insurance”

○ Tight-rope walk at End of Moore

○ Good detectors catch falls and helps us recover



Extra: Intel vs ARM
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