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Fault-Tolerance in HPC

Fault-Tolerance is becoming increasingly important

§ The MTBF of our systems is 
shrinking

§ The cost of checkpoint/restart 
is becoming prohibitively 
expensive

§ The problem will only get 
worse with the inclusion of 
GPUs and node-local SSDs

[1] R. Riesen, K. Ferreira and J. Stearley, "See applications run and throughput jump: The case for redundant computing in HPC," 2010 
International Conference on Dependable Systems and Networks Workshops (DSN-W), Chicago, IL, 2010, pp. 29-34

[1]
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Fault-Tolerance Primitives

§ Detection
— the observation of a fault, error, or degradation

§ Isolation/Diagnosis
— the identification of the root cause of the detected fault

§ Recovery
— the remediation of the fault by affected components
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Fault Tolerance: State of the Practice

§ Existing State of the Practice 
fault tolerance techniques are 
entirely uncoordinated

§ System components each act 
independently to detect, 
diagnose, and recover from 
faults
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Fault Tolerance: State of the Art

§ Components coordinate to 
detect and diagnose faults

§ System components each 
perform their own 
uncoordinated recovery actions

§ These actions are usually 
redundant and sometimes 
contradictory
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MCEM: Multi-Level Cooperative Exception Model
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§ MCEM extends the idea of 
C++/Java exceptions to an 
entire HPC system

§ Exceptions are cooperatively 
handled in a chain

§ Chained exceptions include 
fault and recovery metadata
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MCEM: Global Exceptions
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§ Propagating up works well for 
exceptions originating from a 
single, isolated resource (i.e., 
local exception)

§ Reverse propagation direction 
for exceptions originating 
from a shared resource (i.e., 
global exception)
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MCEM: Fault Model

§ Hard faults
— Segmentation Faults, Node Failures, Network Link 

Failure, PFS Down, User Exceeded Disk Quota

§ Soft faults
— Network or PFS performance degraded, User 

Approaching Disk Quota

§ Fault length
— Effects must last long enough to be reliably detected, 

isolated, and recovered from – O(minutes)
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MCEM Exception Recovery Examples

Failure Type Resource Manager Parallel Job Workflow Manager Scheduler

Parallel Launcher 
Failure -- --

Retry job (transient)

Log system error 
(permanent)

--

Application Failure 
(i.e., mesh tangling) -- -- Launch mesh 

relaxation job --

Process Failure Relaunch Process Restart w/ N ranks -- Grant job addt’l time

Node Failure Mark node down Restart w/ N-1 ranks 
OR req addt’l node -- Grant job addt’l node

User Approaching or 
Exceeding Disk Quota -- --

Migrate some/all 
workflow jobs to 

secondary filesystem

Hold queued jobs 
requiring PFS access
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Quota Exceeded: State of the Practice
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Quota Exceeded: State of the Art
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Quota Exceeded: MCEM
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Evaluation

§ In SOA, parallel applications all 
transition to 2nd filesystem, and 
the WFM re-transitions some/all 
of the jobs

§ MCEM allows the WFM to only 
move the minimal subset of jobs 
exactly once 

MCEM can reduce IO by up to 90%
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Implementation: Resource Manager

§ Why to implement within the system RM
—Communication already implemented and fault-tolerant 

(hopefully)
—Can be a plugin/module, result in less code to write and 

audit

§ Why not to implement within the system RM
—If the RM daemon dies, so does MCEM
—RM failures then become potentially undetectable and 

certainly unrecoverable
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Implementation: Runtime Interface

§ Flux
— flux job raise –severity=1 –type=“segmentation fault” $ID ’{“rank”: “262”, 

“pid”: 1182, “node”: ”quartz454”}’
— flux job eventlog $ID
— flux_event_subscribe (h, "job-exception")

§ PMIx
— PMIx_Notify_event
— PMIx_Register_event_handler

• Supports registering a handler for multiple events, simultaneously
• “Multi-code” handlers always execute after “single-code” handlers
• Supports specifying relative handler precedence within a “category”
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MCEM’s Exception Propagation Order 

Local Exceptions Global Exceptions


