
LLNL-PRES-779103
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

MCEM: Multi-Level Cooperative Exception Model
for HPC Workflows

Stephen Herbein, David Domyancic, Paul Minner, Ignacio Laguna,
Rafael Ferreira da Silva , Dong H. Ahn

June, 2019

2
LLNL-PRES-779103

Fault-Tolerance in HPC

Fault-Tolerance is becoming increasingly important

§ The MTBF of our systems is
shrinking

§ The cost of checkpoint/restart
is becoming prohibitively
expensive

§ The problem will only get
worse with the inclusion of
GPUs and node-local SSDs

[1] R. Riesen, K. Ferreira and J. Stearley, "See applications run and throughput jump: The case for redundant computing in HPC," 2010
International Conference on Dependable Systems and Networks Workshops (DSN-W), Chicago, IL, 2010, pp. 29-34

[1]

3
LLNL-PRES-779103

Fault-Tolerance Primitives

§ Detection
— the observation of a fault, error, or degradation

§ Isolation/Diagnosis
— the identification of the root cause of the detected fault

§ Recovery
— the remediation of the fault by affected components

4
LLNL-PRES-779103

Fault Tolerance: State of the Practice

§ Existing State of the Practice
fault tolerance techniques are
entirely uncoordinated

§ System components each act
independently to detect,
diagnose, and recover from
faults

Scheduler

Parallel Job

Node

Resource Manager

User’s Workflow
Manager

Relaunch
Process

Restart with
N-1 Nodes

SegFault

Lack of coordination results in undetected faults and inefficiency

Process Exited
Abnormally

Rank
Unresponsive

Node
Failed

SegFault

Detection

Recovery

Diagnosis

5
LLNL-PRES-779103

Fault Tolerance: State of the Art

§ Components coordinate to
detect and diagnose faults

§ System components each
perform their own
uncoordinated recovery actions

§ These actions are usually
redundant and sometimes
contradictory

Scheduler

Parallel Job Resource Manager

User’s Workflow
Manager

Resubmit Job

Relaunch
ProcessRestart with

N-1 Nodes

Kill Job

Global Event
Database

ML Model

Lack of coordinated recovery results in suboptimal and redundant work

Node SegFault

Process Failure
on Node X

Process Exited
Abnormally

Rank
Unresponsive

Detection

Recovery

Diagnosis

6
LLNL-PRES-779103

MCEM: Multi-Level Cooperative Exception Model

Scheduler

Parallel Job

Resource Manager

User’s Workflow
Manager

Relaunch
Process

Restart with
N Nodes

Global Event
Database

ML Model

Node SegFault

Process Failure
on Node X

Detection

Recovery

Diagnosis Process Exited
Abnormally

Rank
Unresponsive

§ MCEM extends the idea of
C++/Java exceptions to an
entire HPC system

§ Exceptions are cooperatively
handled in a chain

§ Chained exceptions include
fault and recovery metadata

Extend Job
Walltime

7
LLNL-PRES-779103

MCEM: Global Exceptions

Scheduler

Parallel Job

Resource Manager

User’s Workflow
Manager Transfer jobs

to 2nd PFS

Global Event
Database

ML Model

Node

Parallel FS
Down

Detection

Recovery

Diagnosis
IO Timeouts

§ Propagating up works well for
exceptions originating from a
single, isolated resource (i.e.,
local exception)

§ Reverse propagation direction
for exceptions originating
from a shared resource (i.e.,
global exception)

Hold Jobs
Requiring PFS

Parallel Filesystem

Metadata
Node Failed

8
LLNL-PRES-779103

MCEM: Fault Model

§ Hard faults
— Segmentation Faults, Node Failures, Network Link

Failure, PFS Down, User Exceeded Disk Quota

§ Soft faults
— Network or PFS performance degraded, User

Approaching Disk Quota

§ Fault length
— Effects must last long enough to be reliably detected,

isolated, and recovered from – O(minutes)

9
LLNL-PRES-779103

MCEM Exception Recovery Examples

Failure Type Resource Manager Parallel Job Workflow Manager Scheduler

Parallel Launcher
Failure -- --

Retry job (transient)

Log system error
(permanent)

--

Application Failure
(i.e., mesh tangling) -- -- Launch mesh

relaxation job --

Process Failure Relaunch Process Restart w/ N ranks -- Grant job addt’l time

Node Failure Mark node down Restart w/ N-1 ranks
OR req addt’l node -- Grant job addt’l node

User Approaching or
Exceeding Disk Quota -- --

Migrate some/all
workflow jobs to

secondary filesystem

Hold queued jobs
requiring PFS access

10
LLNL-PRES-779103

Quota Exceeded: State of the Practice

Scheduler

Parallel Job Resource Manager

User’s Workflow
Manager

Migrate to
2nd PFS

Parallel Filesystem

User Exceeded
Quota

User Above
Hard Quota

EQUOT

Detection

Recovery

Diagnosis

11
LLNL-PRES-779103

Quota Exceeded: State of the Art

Scheduler

Parallel Job Resource Manager

User’s Workflow
Manager

Migrate Some
Jobs to 2nd PFS

Migrate to
2nd PFS

Hold User’s
Queued Jobs

Global Event
Database

ML Model

Parallel Filesystem

User Exceeded
Quota

User Above
Hard Quota

EQUOT

Detection

Recovery

Diagnosis

12
LLNL-PRES-779103

Quota Exceeded: MCEM

Scheduler

Parallel Job

Resource Manager

User’s Workflow
Manager

Global Event
Database

ML Model

Node

Detection

Recovery

Diagnosis

Hold User’s
Queued Jobs

Parallel Filesystem

User Exceeded
Quota

EQUOT

User Above
Hard Quota

Migrate Some
Jobs to 2nd PFS

13
LLNL-PRES-779103

Evaluation

§ In SOA, parallel applications all
transition to 2nd filesystem, and
the WFM re-transitions some/all
of the jobs

§ MCEM allows the WFM to only
move the minimal subset of jobs
exactly once

MCEM can reduce IO by up to 90%

14
LLNL-PRES-779103

Implementation: Resource Manager

§ Why to implement within the system RM
—Communication already implemented and fault-tolerant

(hopefully)
—Can be a plugin/module, result in less code to write and

audit

§ Why not to implement within the system RM
—If the RM daemon dies, so does MCEM
—RM failures then become potentially undetectable and

certainly unrecoverable

15
LLNL-PRES-779103

Implementation: Runtime Interface

§ Flux
— flux job raise –severity=1 –type=“segmentation fault” $ID ’{“rank”: “262”,

“pid”: 1182, “node”: ”quartz454”}’
— flux job eventlog $ID
— flux_event_subscribe (h, "job-exception")

§ PMIx
— PMIx_Notify_event
— PMIx_Register_event_handler

• Supports registering a handler for multiple events, simultaneously
• “Multi-code” handlers always execute after “single-code” handlers
• Supports specifying relative handler precedence within a “category”

16
LLNL-PRES-779103

Acknowledgements

§ Co-Authors
— David Domyancic
— Paul Minner
— Ignacio Laguna
— Rafael Ferreira da Silva
— Dong H. Ahn

§ Flux Team
— Ned Bass
— Al Chu
— Jim Garlick
— Mark Grondona
— Tapasya Patki
— Tom Scogland
— Becky Springmeyer

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

18
LLNL-PRES-779103

Backup Slides

19
LLNL-PRES-779103

MCEM’s Exception Propagation Order

Local Exceptions Global Exceptions

